Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37893308

RESUMEN

Orange carotenoid protein (OCP) is a photochromic carotenoprotein involved in the photoprotection of cyanobacteria. It is activated by blue-green light to a red form OCPR capable of dissipating the excess of energy of the cyanobacterial photosynthetic light-harvesting systems. Activation to OCPR can also be achieved in the dark. In the present work, activation by pH changes of two different OCPs-containing echinenone or canthaxanthin as carotenoids-is investigated in different conditions. A particular emphasis is put on OCP encapsulated in SBA-15 mesoporous silica nanoparticles. It is known that in these hybrid systems, under appropriate conditions, OCP remains photoactive. Here, we show that when immobilised in SBA-15, the OCP visible spectrum is sensitive to pH changes, but such a colorimetric response is very different from the one observed for OCP in solution. In both cases (SBA-15 matrices and solutions), pH-induced colour changes are related either by orange-to-red OCP activation, or by carotenoid loss from the denatured protein. Of particular interest is the response of OCP in SBA-15 matrices, where a sudden change in the Vis absorption spectrum and in colour is observed for pH changing from 2 to 3 (in the case of canthaxanthin-binding OCP in SBA-15: λMAX shifts from 454 to 508 nm) and for pH changing from 3 to 4 (in the case of echinenone-binding OCP in SBA-15: λMAX shifts from 445 to 505 nm). The effect of temperature on OCP absorption spectrum and colour (in SBA-15 matrices) has also been investigated and found to be highly dependent on the properties of the used mesoporous silica matrix. Finally, we also show that simultaneous encapsulation in selected surface-functionalised SBA-15 nanoparticles of appropriate fluorophores makes it possible to develop OCP-based pH-sensitive fluorescent systems. This work therefore represents a proof of principle that OCP immobilised in mesoporous silica is a promising system in the development of colorimetric and fluorometric pH and temperature sensors.

2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982307

RESUMEN

Ubiquinone redox chemistry is of fundamental importance in biochemistry, notably in bioenergetics. The bi-electronic reduction of ubiquinone to ubiquinol has been widely studied, including by Fourier transform infrared (FTIR) difference spectroscopy, in several systems. In this paper, we have recorded static and time-resolved FTIR difference spectra reflecting light-induced ubiquinone reduction to ubiquinol in bacterial photosynthetic membranes and in detergent-isolated photosynthetic bacterial reaction centers. We found compelling evidence that in both systems under strong light illumination-and also in detergent-isolated reaction centers after two saturating flashes-a ubiquinone-ubiquinol charge-transfer quinhydrone complex, characterized by a characteristic band at ~1565 cm-1, can be formed. Quantum chemistry calculations confirmed that such a band is due to formation of a quinhydrone complex. We propose that the formation of such a complex takes place when Q and QH2 are forced, by spatial constraints, to share a common limited space as, for instance, in detergent micelles, or when an incoming quinone from the pool meets, in the channel for quinone/quinol exchange at the QB site, a quinol coming out. This latter situation can take place both in isolated and membrane bound reaction centers Possible consequences of the formation of this charge-transfer complex under physiological conditions are discussed.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Ubiquinona/metabolismo , Hidroquinonas , Detergentes , Espectrofotometría Infrarroja , Quinonas/metabolismo , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Rhodobacter sphaeroides/metabolismo , Transporte de Electrón
3.
Chemistry ; 29(22): e202204010, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36748307

RESUMEN

The parameters that determine the formation of linear peptides and cyclic dimers (diketopiperazine, DKP) on silica surfaces of different surface area, silanol and siloxane ring populations, controlled by thermal treatments, are investigated upon glycine deposition from gas and liquid phases. The formed products were characterized by infrared and Raman spectroscopies, X-ray diffraction and thermogravimetric analysis. The results reveal the importance of "nearly-free" silanols to form ester centers as primers for the formation of linear peptides over DKP, on surfaces with medium silanol density (1.4 to 2.7 nm-2 ). Quenched reactivity is seen on isolated silanols (density≤0.7 nm-2 ), while silanols involved in hydrogen bonding (density of 4.5 nm-2 ) weakly interact with Gly resulting in its cyclization to DKP. Deposition of glycine from liquid phase may also form both DKP and linear polymers, depending on its loading and silica surface. These conclusions demonstrate the complexity of glycine surface chemistry in the polymerization reaction and highlight the interest of a surface science approach to evaluate geochemical prebiotic scenarios.

4.
Photochem Photobiol Sci ; 22(6): 1379-1391, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36853495

RESUMEN

Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/química , Vibración , Carotenoides/metabolismo , Cianobacterias/metabolismo , Espectrofotometría Infrarroja
5.
Dalton Trans ; 51(48): 18489-18501, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36421057

RESUMEN

The optoelectronic features of 3-hydroxyflavone (3HF) self-assembled on the surface of an n-type semiconducting metal oxide (TiO2) and an insulator (Al2O3) are herein investigated. 3HF molecules use the coordinatively unsaturated metal ions present on the oxide surface to form metal complexes, which exhibit different behaviors upon light irradiation, depending on the nature of the metal ion. Specifically, we show that the photoluminescence of the surface species can be modulated according to the chemical properties of the complex (i.e. the binding metal ion), resulting in solid-state emitters in a high quantum yield (about 15%). Furthermore, photoinduced charge injection can be promoted or inhibited, providing a multifunctional hybrid system.


Asunto(s)
Electrones , Óxidos , Titanio , Quelantes , Metales/química , Iones
6.
Langmuir ; 38(26): 8038-8053, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35737817

RESUMEN

Leucine on silica constitutes an interesting system from the point of view of origins of life studies since leucine coadsorbed on SiO2 together with glutamic acid can give rise to rather long linear polypeptides upon activation. It is also an ideal system to test methods of molecular characterization of biomolecules deposited on mineral surfaces since it combines a small-scale model of peptides and proteins, which are among the most important components of biodevices, with one of the most widely used inorganic materials. We have deposited l-leucine on a high surface fumed silica in the submonolayer range and characterized it by a multipronged approach including macroscopic information (thermogravimetry, X-ray diffraction), in situ spectroscopic methods (IR, multinuclear solid-state NMR including single-pulse and CP-MAS, 2-D HETCOR), and molecular modeling by density functional theory (DFT), including calculation of NMR parameters. Specific information can be obtained on the adsorption and interaction mechanism. Leucine is rather strongly adsorbed without any covalent bonds, through the formation of a specific lattice of H-bonds that often involve coadsorbed water molecules. Its state is indeed strongly dependent on the drying procedure: insufficient drying results in liquid-like surroundings for the leucine functional groups, while vacuum drying only retains a limited number of waters (of the order of 5 per leucine molecule). The most stable models have zwitterionic leucine interacting directly with surface silanols through their ammonium group, while the carboxylate interacts through bridging waters. Experimental NMR chemical shifts are satisfactorily predicted for these models, and leucine can be viewed as a probe for specific groups of surface sites known as silanol nests.


Asunto(s)
Dióxido de Silicio , Agua , Adsorción , Leucina/química , Espectroscopía de Resonancia Magnética/métodos , Péptidos/química , Dióxido de Silicio/química , Agua/química
8.
Photochem Photobiol Sci ; 21(4): 557-584, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35188651

RESUMEN

Time-resolved infrared (IR) spectroscopy is a widely used technique in the investigation of photoinduced reactions, given its capabilities of providing structural information about the presence of intermediates and the reaction mechanism. Despite the fact that it is used in several fields since the '80s, the communication between the different scientific communities (photochemists, photobiologists, etc.) has been to date quite limited. In some cases, this lack of communication happened-and still happens-even inside the same scientific community (for instance between specialists in ultrafast ps/fs IR and those in "fast" ns/µs/ms IR). Even more surprising is the difficulty of non-specialists to understand the potential of time-resolved IR spectroscopy, despite the fact that IR spectroscopy is normally taught to all chemistry and material science students, and to several biology and physics students. This tutorial review aims at helping to solve these issues, first by providing a comprehensive but reader-friendly overview of the different techniques, and second, by focusing on five "case studies" (from photobiology, gas-phase photocatalysis, photochemistry, semiconductors and metal-carbonyl complexes). We are confident that this approach can help the reader-whichever is its background-to understand the capabilities of time-resolved IR spectroscopy to study the mechanism of photoinduced reactions.


Asunto(s)
Complejos de Coordinación , Semiconductores , Humanos , Fotobiología , Fotoquímica , Espectrofotometría Infrarroja
9.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613484

RESUMEN

While it has long been mimicked by simple precipitation reactions under biologically relevant conditions, calcium phosphate biomineralization is a complex process, which is highly regulated by physicochemical factors and involves a variety of proteins and other biomolecules. Alkaline phosphatase (ALP), in particular, is a conductor of sorts, directly regulating the amount of orthophosphate ions available for mineralization. Herein, we explore enzyme-assisted mineralization in the homogeneous phase as a method for biomimetic mineralization and focus on how relevant ionic substitution types affect the obtained minerals. For this purpose, mineralization is performed over a range of enzyme substrate concentrations and fluoride concentrations at physiologically relevant conditions (pH 7.4, T = 37 °C). Refinement of X-ray diffraction data is used to study the crystallographic unit cell parameters for evidence of ionic substitution in the lattice, and infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) are used for complementary information regarding the chemical composition of the minerals. The results show the formation of substituted hydroxyapatite (HAP) after 48 h mineralization in all conditions. Interestingly, an expansion of the crystalline unit cell with an increasing concentration of the enzyme substrate is observed, with only slight changes in the particle morphology. On the contrary, by increasing the amount of fluoride, while keeping the enzyme substrate concentration unchanged, a contraction of the crystalline unit cell and the formation of elongated, well-crystallized rods are observed. Complementary IR and XPS data indicate that these trends are explained by the incorporation of substituted ions, namely CO32- and F-, in the HAP lattice at different positions.


Asunto(s)
Apatitas , Fluoruros , Fosfatos de Calcio/química , Durapatita/química , Difracción de Rayos X , Catálisis , Calcio/metabolismo
10.
Sci Rep ; 11(1): 19356, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588537

RESUMEN

The first step of pyrimidine synthesis along the orotate pathway is studied to test the hypothesis of geochemical continuity of protometabolic pathways at the origins of life. Carbamoyl phosphate (CP) is the first high-energy building block that intervenes in the in vivo synthesis of the uracil ring of UMP. Thus, the likelihood of its occurrence in prebiotic conditions is investigated herein. The evolution of carbamoyl phosphate in water and in ammonia aqueous solutions without enzymes was characterised using ATR-IR, 31P and 13C spectroscopies. Carbamoyl phosphate initially appears stable in water at ambient conditions before transforming to cyanate and carbamate/hydrogenocarbonate species within a matter of hours. Cyanate, less labile than CP, remains a potential carbamoylating agent. In the presence of ammonia, CP decomposition occurs more rapidly and generates urea. We conclude that CP is not a likely prebiotic reagent by itself. Alternatively, cyanate and urea may be more promising substitutes for CP, because they are both "energy-rich" (high free enthalpy molecules in aqueous solutions) and kinetically inert regarding hydrolysis. Energy-rich inorganic molecules such as trimetaphosphate or phosphoramidates were also explored for their suitability as sources of carbamoyl phosphate. Although these species did not generate CP or other carbamoylating agents, they exhibited energy transduction, specifically the formation of high-energy P-N bonds. Future efforts should aim to evaluate the role of carbamoylating agents in aspartate carbamoylation, which is the following reaction in the orotate pathway.

11.
Plant Cell ; 33(4): 1286-1302, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793891

RESUMEN

Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons for life on Earth. The photochemical reaction center of PSII is known to possess two stationary states. In the open state (PSIIO), the absorption of a single photon triggers electron-transfer steps, which convert PSII into the charge-separated closed state (PSIIC). Here, by using steady-state and time-resolved spectroscopic techniques on Spinacia oleracea and Thermosynechococcus vulcanus preparations, we show that additional illumination gradually transforms PSIIC into a light-adapted charge-separated state (PSIIL). The PSIIC-to-PSIIL transition, observed at all temperatures between 80 and 308 K, is responsible for a large part of the variable chlorophyll-a fluorescence (Fv) and is associated with subtle, dark-reversible reorganizations in the core complexes, protein conformational changes at noncryogenic temperatures, and marked variations in the rates of photochemical and photophysical reactions. The build-up of PSIIL requires a series of light-induced events generating rapidly recombining primary radical pairs, spaced by sufficient waiting times between these events-pointing to the roles of local electric-field transients and dielectric relaxation processes. We show that the maximum fluorescence level, Fm, is associated with PSIIL rather than with PSIIC, and thus the Fv/Fm parameter cannot be equated with the quantum efficiency of PSII photochemistry. Our findings resolve the controversies and explain the peculiar features of chlorophyll-a fluorescence kinetics, a tool to monitor the functional activity and the structural-functional plasticity of PSII in different wild-types and mutant organisms and under stress conditions.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/química , Clorofila/análogos & derivados , Clorofila/química , Diurona/farmacología , Fluorescencia , Luz , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Conformación Proteica , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Thermosynechococcus/química
12.
Data Brief ; 34: 106630, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33409341

RESUMEN

The data presented here concern the photophysical characterization of luminescent MCM-41 nanoparticles doped with 3-hydroxyflavone and 7-hydroxyflavone, two fluorescent flavonoids. UV-Vis and fluorescence spectra obtained on freshly-prepared samples and aged (2 months exposed to air) samples are shown. The effect of light exposure is also studied. In parallel, experiments have been carried out in acetonitrile solutions of the two flavonoids as a term of comparison. Time-dependent density functional theory calculations have also been used to simulate UV-Vis and emission spectra of different species for both flavonoids (neutral molecule, tautomers, cationic and anionic forms), taking into account the effect of the surrounding medium (solvent). Density functional theory calculations of vibrational spectra (IR, Raman) of neutral and tautomeric species of 3HF and 7HF are also provided.

14.
J Phys Chem B ; 123(15): 3259-3266, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30895789

RESUMEN

The orange carotenoid protein (OCP), which is essential in cyanobacterial photoprotection, is the first photoactive protein containing a carotenoid as an active chromophore. Static and time-resolved Fourier transform infrared (FTIR) difference spectroscopy under continuous illumination at different temperatures was applied to investigate its photoactivation mechanism. Here, we demonstrate that in the OCP, the photo-induced conformational change involves at least two different steps, both in the second timescale at 277 K. Each step involves partial reorganization of α-helix domains. At early illumination times, the disappearance of a nonsolvent-exposed α-helix (negative 1651 cm-1 band) is observed. At longer times, a 1644 cm-1 negative band starts to bleach, showing the disappearance of a solvent-exposed α-helix, either the N-terminal extension and/or the C-terminal tail. A kinetic analysis clearly shows that these two events are asynchronous. Minor modifications in the overall FTIR difference spectra confirm that the global protein conformational change consists of-at least-two asynchronous contributions. Comparison of spectra recorded in H2O and D2O suggests that internal water molecules may contribute to the photoactivation mechanism.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Modelos Moleculares , Conformación Proteica en Hélice alfa , Factores de Tiempo
15.
Chemistry ; 25(5): 1275-1285, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30284764

RESUMEN

Evidence for the formation of linear oligopeptides with nonrandom sequences from mixtures of amino acids coadsorbed on silica and submitted to a simple thermal activation is presented. The amino acid couples (glutamic acid+leucine) and (aspartic acid+valine) were deposited on a fumed silica and submitted to a single heating step at moderate temperature. The evolution of the systems was characterized by X-ray diffraction, infrared spectroscopy, thermosgravimetric analysis, HPLC, and electrospray ionization mass spectrometry (ESI-MS). Evidence for the formation of amide bonds was found in all systems studied. While the products of single amino acids activation on silica could be considered as evolutionary dead ends, (glutamic acid+leucine) and, at to some extent, (aspartic acid+valine) gave rise to the high yield formation of linear peptides up to the hexamers. Oligopeptides of such length have not been observed before in surface polymerization scenarios (unless the amino acids had been deposited by chemical vapor deposition, which is not realistic in a prebiotic environment). Furthermore, not all possible amino acid sequences were present in the activation products, which is indicative of polymerization selectivity. These results are promising for origins of life studies because they suggest the emergence of nonrandom biopolymers in a simple prebiotic scenario.


Asunto(s)
Aminoácidos/química , Péptidos/química , Prebióticos/análisis , Dióxido de Silicio/química , Ácido Aspártico , Ácido Glutámico , Leucina/química , Polimerizacion , Espectrometría de Masa por Ionización de Electrospray , Termogravimetría , Valina
16.
Photochem Photobiol Sci ; 17(7): 923-933, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29911222

RESUMEN

A detailed account on the photophysics of 3-hydroxyflavone (3HF) in 27 organic solvents is reported. Dual fluorescence of neutral 3HF was observed in protic, polar, and weakly polar solvents, endowed with sufficiently high hydrogen bond accepting and/or donating capabilities. Ground-state solvent-induced 3HF deprotonation was reported in 14 cases. 3HF anion photophysics was investigated, and the deprotonation constant Kdep calculated. Previously reported models (based on solute-solvent intermolecular hydrogen bonds) to explain solvent effects on Excited-State Intramolecular Proton Transfer (ESIPT) and on solvent-induced deprotonation have been re-examined and improved in order to rationalize the observed photophysical behaviour in all the studied solvents. Hydrogen bond donor acidity and hydrogen bond acceptor basicity are shown to be key parameters. The results are discussed in the framework of the use of 3HF as an environment-sensitive fluorescent sensor in several research fields, and as a model system in the study of ESIPT reactions. Solvent effects on 3HF reactivity are also discussed, as the role of the surrounding media on the chemistry of flavonols is an emerging topic in natural product research.


Asunto(s)
Flavonoides/química , Protones , Aniones/química , Enlace de Hidrógeno , Solventes/química , Espectrofotometría
17.
J Phys Chem A ; 122(1): 390-397, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29236493

RESUMEN

Hybrid methods combining quantum chemistry and classical models are largely used to describe solvent effects in absorption and emission processes of solvated chromophores. Here we compare three different formulations of these hybrid approaches, using a continuum, an atomistic, or a mixed description of the solvent. In all cases mutual polarization effects between the quantum and the classical subsystems are taken into account. As a molecular probe, 3-hydroxyflavone has been selected due to its rich photophysics, which involves different tautomeric and anionic forms. We show that a clear assignment of the measured spectroscopic signals to each specific form can be achieved by combining the different solvation models into an integrated and cost-effective strategy. Previously proposed mechanisms for the excited-state proton transfer (ESIPT), specific solvent perturbation effects on ESIPT, and solvent-assisted anion formation are also validated in terms of short- and long-range solvation effects.

18.
Photosynth Res ; 131(2): 121-144, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27678250

RESUMEN

Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.


Asunto(s)
Fotosíntesis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Carotenoides/fisiología , Clorofila/fisiología , Clorofila A , Cinética , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Rhodobacter sphaeroides/fisiología , Tilacoides/fisiología
19.
Molecules ; 20(7): 12229-49, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26151118

RESUMEN

Light-induced infrared difference spectroscopy (IR-DS) has been used, especially in the last decade, to investigate early photophysics, energy transfer and photoprotection mechanisms in isolated and membrane-bound light harvesting complexes (LHCs). The technique has the definite advantage to give information on how the pigments and the other constituents of the biological system (proteins, membranes, etc.) evolve during a given photoreaction. Different static and time-resolved approaches have been used. Compared to the application of IR-DS to photosynthetic Reaction Centers (RCs), however, IR-DS applied to LHCs is still in an almost pioneering age: very often sophisticated techniques (step-scan FTIR, ultrafast IR) or data analysis strategies (global analysis, target analysis, multivariate curve resolution) are needed. In addition, band assignment is usually more complicated than in RCs. The results obtained on the studied systems (chromatophores and RC-LHC supercomplexes from purple bacteria; Peridinin-Chlorophyll-a-Proteins from dinoflagellates; isolated LHCII from plants; thylakoids; Orange Carotenoid Protein from cyanobacteria) are summarized. A description of the different IR-DS techniques used is also provided, and the most stimulating perspectives are also described. Especially if used synergically with other biophysical techniques, light-induced IR-DS represents an important tool in the investigation of photophysical/photochemical reactions in LHCs and LHC-containing systems.


Asunto(s)
Complejos de Proteína Captadores de Luz/análisis , Espectrofotometría Infrarroja/métodos , Proteínas Bacterianas/análisis , Proteínas de Plantas/análisis
20.
Photochem Photobiol Sci ; 14(2): 238-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25188921

RESUMEN

The photosynthetic reaction center (RC) is a membrane pigment-protein complex that catalyzes the initial charge separation reactions of photosynthesis. Following photoexcitation, the RC undergoes conformational relaxations which stabilize the charge-separated state. Dehydration of the complex inhibits its conformational dynamics, providing a useful tool to gain insights into the relaxational processes. We analyzed the effects of dehydration on the electronic structure of the primary electron donor P, as probed by visible-NIR and light-induced FTIR difference spectroscopy, in RC films equilibrated at different relative humidities r. Previous FTIR and ENDOR spectroscopic studies revealed that P, an excitonically coupled dimer of bacteriochlorophylls, can be switched between two conformations, P866 and P850, which differ in the extent of delocalization of the unpaired electron between the two bacteriochlorophyll moieties (PL and PM) of the photo-oxidized radical P(+). We found that dehydration (at r = 11%) shifts the optical Qy band of P from 866 to 850-845 nm, a large part of the effect occurring already at r = 76%. Such a dehydration weakens light-induced difference FTIR marker bands, which probe the delocalization of charge distribution within the P(+) dimer (the electronic band of P(+) at 2700 cm(-1), and the associated phase-phonon vibrational modes at around 1300, 1480, and 1550 cm(-1)). From the analysis of the P(+) keto C[double bond, length as m-dash]O bands at 1703 and 1713-15 cm(-1), we inferred that dehydration induces a stronger localization of the unpaired electron on PL(+). The observed charge redistribution is discussed in relation to the dielectric relaxation of the photoexcited RC on a long (10(2) s) time scale.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Agua/química , Electrones , Humedad , Fonones , Procesos Fotoquímicos , Conformación Proteica , Rhodobacter sphaeroides , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía Infrarroja Corta , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...