Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 103(16): 6851-6852, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31302709

RESUMEN

In our original published manuscript entitled "Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the International Space Station" (Singh et al. 2019), we found a taxonomic description format error: As per the Rule 27.

2.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095297

RESUMEN

The discovery of active microbial life deeply buried beneath the seafloor has opened important questions: how do microorganisms cope with extreme energy limitation, what is their metabolic activity, and how do they repair damages to essential biomolecules? We used a D:L-amino acid model to calculate microbial biomass turnover times. We used a metagenome and metatranscriptome analysis to investigate the distribution of the gene that encodes Protein-L-iso aspartate(D-aspartate) O-methyltransferase (PCMT), an enzyme which recognizes damaged L-isoapartyl and D-aspartyl residues in proteins and catalyzes their repair. Sediment was retrieved during the Integrated Ocean Drilling Program (IODP) Expedition 347 from Landsort Deep and the Little Belt in the Baltic Sea. The study covers the period from the Baltic Ice Lake ca. 13 000 years ago to the present. Our results provide new knowledge on microbial biomass turnover times and protein repair in relation to different regimes of organic matter input. For the first time, we show that the PCMT gene was widely distributed and expressed among phylogenetically diverse groups of microorganisms. Our findings suggest that microbial communities are capable of repairing D-amino acids within proteins using energy obtained from the degradation of a mixture of labile compounds in microbial necromass and more recalcitrant organic matter.


Asunto(s)
Bacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Microbiología del Suelo , Océano Atlántico , Bacterias/genética , Biomasa , Perfilación de la Expresión Génica , Sedimentos Geológicos/química , Lagos , Metagenoma , Microbiota/genética , Filogenia , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética
3.
Appl Microbiol Biotechnol ; 103(11): 4483-4497, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31011775

RESUMEN

Several evolutionarily distinct, near full-length draft metagenome-resolved genomes (MRG), were assembled from sequences recovered from the International Space Station (ISS) environments. The retrieval of MRGs facilitated the exploration of a large collection of archived strains (~ 500 isolates) and assisted in isolating seven related strains. The whole genome sequences (WGS) of seven ISS strains exhibited 100% identity to the 4.85 × 106 bp of four MRGs. The "metagenome to phenome" approach led to the description of a novel bacterial genus from the ISS samples. The phylogenomics and traditional taxonomic approaches suggested that these seven ISS strains and four MRGs were not phylogenetically affiliated to any validly described genera of the family Erwiniaceae, but belong to a novel genus with the proposed name Kalamiella. Comparative genomic analyses of Kalamiella piersonii strains and MRGs showed genes associated with carbohydrate (348 genes), amino acid (384), RNA (59), and protein (214) metabolisms; membrane transport systems (108), pathways for biosynthesis of cofactors, vitamins, prosthetic groups, and pigments (179); as well as mechanisms for virulence, disease, and defense (50). Even though Kalamiella genome annotation and disc diffusion tests revealed multidrug resistance, the PathogenFinder algorithm predicted that K. piersonii strains are not human pathogens. This approach to isolating microbes allows for the characterization of functional pathways and their potential virulence properties that can directly affect human health. The isolation of novel strains from the ISS has broad applications in microbiology, not only because of concern for astronaut health but it might have a great potential for biotechnological relevance. The metagenome to phenome approach will help to improve our understanding of complex metabolic networks that control fundamental life processes under microgravity and in deep space.


Asunto(s)
Microbiología Ambiental , Gammaproteobacteria/clasificación , Gammaproteobacteria/aislamiento & purificación , Filogenia , Nave Espacial , Técnicas de Tipificación Bacteriana , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Humanos , Metagenómica , Secuenciación Completa del Genoma
4.
Sci Rep ; 7(1): 5680, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720809

RESUMEN

The study of active microbial populations in deep, energy-limited marine sediments has extended our knowledge of the limits of life on Earth. Typically, microbial activity in the deep biosphere is calculated by transport-reaction modelling of pore water solutes or from experimental measurements involving radiotracers. Here we modelled microbial activity from the degree of D:L-aspartic acid racemization in microbial necromass (remains of dead microbial biomass) in sediments up to ten million years old. This recently developed approach (D:L-amino acid modelling) does not require incubation experiments and is highly sensitive in stable, low-activity environments. We applied for the first time newly established constraints on several important input parameters of the D:L-amino acid model, such as a higher aspartic acid racemization rate constant and a lower cell-specific carbon content of sub-seafloor microorganisms. Our model results show that the pool of necromass amino acids is turned over by microbial activity every few thousand years, while the turnover times of vegetative cells are in the order of years to decades. Notably, microbial turnover times in million-year-old sediment from the Peru Margin are up to 100-fold shorter than previous estimates, highlighting the influence of microbial activities on element cycling over geologic time scales.


Asunto(s)
Aminoácidos/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Aminoácidos/química , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biomasa , Sedimentos Geológicos/química , ARN Ribosómico 16S/análisis
5.
Front Microbiol ; 6: 1553, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834712

RESUMEN

Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21-47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments.

6.
Nanomedicine ; 6(2): 257-62, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19616126

RESUMEN

The synthesis of metallic nanoparticles is an active area of academic and, more importantly, "application research" in nanotechnology. A variety of chemical and physical procedures could be used for synthesis of metallic nanoparticles. However, these methods are fraught with many problems including use of toxic solvents, generation of hazardous by-products, and high energy consumption. Accordingly, there is an essential need to develop environmentally benign procedures for synthesis of metallic nanoparticles. A promising approach to achieve this objective is to exploit the array of biological resources in nature. Indeed, over the past several years, plants, algae, fungi, bacteria, and viruses have been used for production of low-cost, energy-efficient, and nontoxic metallic nanoparticles. In this review, we provide an overview of various reports of synthesis of metallic nanoparticles by biological means. FROM THE CLINICAL EDITOR: This review provides an overview of various methods of synthesis of metallic nanoparticles by biological means. Many chemical and physical procedures used for synthesis of metallic nanoparticles are fraught with major problems: toxic solvents, hazardous by-products, high energy consumption. Over the past several years, plants, algae, fungi, bacteria, and viruses have been used for production of low-cost, energy-efficient, and nontoxic metallic nanoparticles.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/metabolismo , Metales/química , Metales/metabolismo , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...