Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2313789121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38335257

RESUMEN

Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.


Asunto(s)
Quirópteros , Filoviridae , Animales , Filogenia , China , Mamíferos
2.
Nat Commun ; 14(1): 2488, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120646

RESUMEN

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Asunto(s)
COVID-19 , Quirópteros , Virus , Animales , Animales Domésticos/virología , Animales Salvajes/virología , Animales de Zoológico/virología , Quirópteros/virología , Mamíferos/virología , Pangolines/virología , Filogenia , Zoonosis/virología
3.
Front Immunol ; 13: 930631, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958565

RESUMEN

Classical swine fever virus (CSFV) is a major animal pathogen threatening the global pork industry. To date, numerous anti-CSFV monoclonal antibodies (mAbs) and their recognizing epitopes have been reported. However, few mAbs were systematically characterized for the capacity to differentiate field CSFV isolates from CSF vaccine strains, and the molecular basis associated with antigenic differences between vaccines and field isolates is still largely unknown. In the present study, recombinant CSFV structural glycoproteins E2 of both virulent and vaccine strains and Erns of vaccine strain were expressed using eukaryotic cells and murine mAbs generated against E2 and Erns. After serial screening and cloning of the hybridomas, the viral spectra of mAbs were respectively determined by indirect fluorescent antibody assay (IFA) using 108 CSFVs, followed by Western blot analysis using expressed glycoproteins of all CSFV sub-genotypes including vaccine strains. The antigenic structures recognized by these mAbs were characterized by epitope mapping using truncated, chimeric, and site-directed mutated E2 and Erns proteins. We have identified two vaccine-specific, one field isolate-specific, and two universal CSFV-specific mAbs and five novel conformational epitopes with critical amino acid (aa) motifs that are associated with these five mAbs: 213EPD215, 271RXGP274, and 37LXLNDG42 on E2 and 38CKGVP42, W81, and D100/V107 on Erns. Particularly, E213 of E2 is field isolate-specific, while N40 of E2 and D100/V107 of Erns are vaccine strain-specific. Results from our study further indicate that N40D of E2 mutation in field strains was likely produced under positive selection associated with long-term mass vaccination, leading to CSFV evasion of host immune response. Taking together, this study provides new insights into the antigenic structure of CSFV E2 and Erns and the differentiating mAbs will contribute to the development of a diagnostic strategy to differentiate C-strain vaccination from natural infection (DIVA) of CSFV in terms of elimination of CSF in China.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vacunas Virales , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Peste Porcina Clásica/prevención & control , Virus de la Fiebre Porcina Clásica/genética , Epítopos , Glicoproteínas , Ratones , Porcinos
4.
J Virol ; 96(17): e0078222, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36005760

RESUMEN

Members of the genus Hepacivirus have a broad range of hosts, with at least 14 species identified. To date, a highly pathogenic hepacivirus causing severe disease in animals has not been found. Here, by using high-throughput sequencing, a new hepacivirus was identified as the dominant and highly pathogenic virus in severe acute hepatitis outbreaks in bamboo rats (Rhizomys pruinosus), with ≈80% mortality; this virus emerged in February 2020 in two bamboo rat farms in China. Hepaciviral genome copies in bamboo rat liver were significantly higher than in other organs. Genomic sequences of hepacivirus strains from 12 sick bamboo rats were found to share 85.3 to 100% nucleotide (nt) identity and 94.9 to 100% amino acid (aa) identity and to share 79.7 to 87.8% nt and 90.4 to 97.8% aa identities with previously reported bamboo rat hepaciviruses of Vietnam and China. Sequence analysis further revealed the simultaneous circulation of genetically divergent hepacivirus variants within the two outbreaks. Phylogenetic analysis showed that hepacivirus strains from the present and previous studies formed an independent clade comprised of at least two genotypes, clearly different from all other known species, suggesting a novel species within the genus Hepacivirus. This is the first report of a non-human-infecting hepacivirus causing potentially fatal infection of bamboo rats, and the associated hepatitis in the animals potentially can be used to develop a surrogate model for the study of hepatitis C virus infection in humans and for the development of therapeutic strategies. IMPORTANCE Members of the genus Hepacivirus have a broad host range, with at least 14 species identified, but none is highly pathogenic to its host except for hepatitis C virus, which causes severe liver diseases in humans. In this study, a new liver-tropic hepacivirus species was identified by high-throughput sequencing as the pathogen associated with two outbreaks of severely acute hepatitis in hoary bamboo rats (Rhizomys pruinosus) on two farms in Hainan Province, China; this is the first reported highly pathogenic animal hepacivirus to our knowledge. Further phylogenetic analysis suggested that the hepaciviruses derived from hoary bamboo rats in either the current or previous studies represent a novel species within the genus Hepacivirus. This finding is a breakthrough that has significantly updated our understanding about the pathogenicity of animal hepaciviruses, and the hepacivirus-associated hepatitis in bamboo rats may have a use as an animal infection model to understand HCV infection and develop therapeutic strategies.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , China/epidemiología , Brotes de Enfermedades , Hepacivirus/genética , Humanos , Filogenia
5.
Viruses ; 14(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35891524

RESUMEN

Classical swine fever can be controlled effectively by vaccination with C-strain vaccine. In this study, we developed a novel competitive enzyme-linked immunosorbent assay (cELISA) based on a C-strain Erns specific monoclonal antibody (mAb 1504), aiming to serologically measure immune responses to C-strain vaccine in pigs, and finally to make the C-strain become a DIVA-compatible vaccine. The cELISA system was established based on the strategy that mAb 1504 will compete with the C-strain induced antibodies in the pig serum to bind the C-strain Erns protein. The cELISA was optimized and was further evaluated by testing different categories of pig sera. It can efficiently differentiate C-strain immunized from wild-type CSFV-infected pigs and lacks cross-reaction with other common swine viruses and viruses in genus Pestivirus such as Bovine viral diarrhea virus (BVDV). The C-strain antibody can be tested in pigs 7-14 days post vaccination with this cELISA. The sensitivity and specificity of the established cELISA were 100% (95% confidence interval: 95.60 to 100%) and 100% (95% confidence interval: 98.30 to 100%), respectively. This novel cELISA is a reliable tool for specifically measuring and differentiating immune responses to C-strain vaccine in pigs. By combining with the wild-type CSFV-specific infection tests, it can make the C-strain have DIVA capability.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vacunas Virales , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/prevención & control , Ensayo de Inmunoadsorción Enzimática , Inmunidad , Porcinos
6.
Infect Genet Evol ; 100: 105273, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35321840

RESUMEN

Ephemeroviruses are arthropod-borne rhabdoviruses within Ephemerovirus genus and have been isolated exclusively from cattle and haematophagous arthropods (mosquitoes and biting midges) without any member detected or isolated up to date from pigs, although some serological surveys have indicated that pigs may be a silent host for ephemerovirus infection. Here, many viral reads annotated to, but genetically distinct from, the existing members within the Ephemerovirus genus have been identified in the meta-transcriptomic data of two clinical classical swine fever virus (CSFV)-infected samples (HeN10 and GDMM7). The nearly complete genome sequences of the two novel ephemeroviruses have been obtained through contig assembly, specific RT-PCR and sequencing, therefore named as porcine ephemeroviruses (PoEVs). Genome nucleotide sequence analysis showed that PoEV strains HeN10 and GDMM7 have similar genome organization and 66.5% genomic identity to each other, but both are genetically distant from all members of the Ephemerovirus genus with identity being only 51.1-59.6%. Furthermore, comparison of the most conserved ephemeroviral proteins N and L indicated that PoEV strains HeN10 and GDMM7 share a high sequence identity to each other (N: 78.1%; L: 70.7%), but are diverged from the known ephemeroviruses (N: 43.4-60.7%; L: 47.6-58.5%). The genetic distance is significantly beyond the criteria for demarcation of viruses assigned to different ephemerovirus species. Thereby, two novel viruses named as PoEV1 (strain HeN10) and PoEV2 (strain GDMM7) are identified and these appear to represent two new species within the Ephemerovirus genus. The present study showed the first genome evidence of pig ephemeroviruses, likely expanding the known host range of ephemerovirus.


Asunto(s)
Artrópodos , Enfermedades de los Bovinos , Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Ephemerovirus , Rhabdoviridae , Animales , Bovinos , Virus de la Fiebre Porcina Clásica/genética , Porcinos
7.
Virus Evol ; 7(2): veab084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659797

RESUMEN

Currently, the Birnaviridae family contains four genera with all members identified from birds, fishes, and insects only. The present study reports a novel birnavirus unexpectedly identified from classical swine fever virus-infected pigs by viral metagenomic analysis, which is, therefore, named as porcine birnavirus (PBRV). Follow-up reverse transcription-polymerase chain reaction (RT-PCR) screening of archived tissues of diseased pigs identified 16 PBRV strains from nine provinces/autonomous regions in China spanning 21 years (1998-2019), and the viral loads of PBRV in clinical samples were 105.08-107.95 genome copies per 0.1 g tissue, showing the replication of PBRVs in the pigs. Genome-based sequence comparison showed that PBRVs are genetically distant from existing members within the Birnaviridae family with 45.8-61.6 per cent and 46.2-63.2 per cent nucleotide sequence similarities in segments A and B, respectively, and the relatively closed viruses are avibirnavirus strains. In addition, indels of 57, 5, and 18 amino acid residues occurred in 16, 2, and 7 locations of the PBRV polyprotein and VP5 and VP1 proteins, respectively, as compared to the reference avibirnaviruses. Phylogenetic analysis showed that PBRVs formed an independent genotype separated from four other genera, which could be classified into two or three subgenotypes (PBRV-A1-2 and PBRV-B1-3) based on the nucleotide sequences of full preVP2 and VP1 genes, respectively. All results showed that PBRV represents a novel porcine virus species, which constitutes the first mammalian birnavirus taxon, thereby naming as Mambirnavirus genus is proposed.

8.
Vaccine ; 39(33): 4573-4576, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34246494

RESUMEN

Many Chinese breeding pigs are repeatedly vaccinated against classical swine fever virus (CSFV) and porcine epidemic diarrhea virus (PEDV), which cause fatal, highly contagious diseases. To reduce their high frequency vaccination-induced immune stress, we constructed a combined vaccine based on the E2 protein of CSFV and the S1 spike protein subunit of PEDV (named E2-S1). In mice, the E2-S1 vaccine elicited higher neutralizing antibody titers and IgG1/IgG2a ratios against CSFV and PEDV than those induced by individual E2 or S1 vaccines. Moreover, it elicited high IL-4 expression, but no IFN-γ expression. The results suggest that good compatibility exists between E2 and S1 antigens, and the E2-S1 vaccine can elicit a strong Th2-type cell-mediated humoral immune response. The E2-S1 recombinant fusion protein provides a novel vaccine candidate against both CSFV and PEDV, laying the foundation for future combination vaccines against swine diseases.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Epidemias , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Animales , Anticuerpos Antivirales , Peste Porcina Clásica/prevención & control , Diarrea , Ratones , Porcinos , Vacunas Combinadas , Proteínas del Envoltorio Viral
9.
Infect Genet Evol ; 91: 104819, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771724

RESUMEN

Senecavirus A (SVA), an emerging swine pathogen, has been reported in many provinces of China since the first outbreak in 2015 in Guangdong province. In this study, 10 lymph nodes positive for SVA, collected between 2018 and 2019 from slaughterhouses in Guangdong province, were subjected to virus isolation. Rapid and evident cytopathic effects (CPEs) were observed in SVA-infected PK-15 cells, including shrinking, rounding and detaching, with peak titers being reached at 24 h post infection (hpi). Electron microscopy showed that SVA particles are spherical and approximately 30 nm in diameter, and exist as crystalline lattices in cytoplasm revealed by ultra-thin sectioning. Phylogenetic analysis based on the whole genome sequences of all available isolates showed that SVA globally can be divided into two groups with each being further divided into two subgroups (Ia-b and IIa-b), and with the Guangdong isolates obtained here and other Chinese strains belonging to subgroups IIa and IIb. Evolutionary analysis showed that the mean substitution rate of SVA was 2.696 × 10-3 per site per year based on whole genomic sequences, with subgroup IIb isolates having evolved faster than those of subgroup IIa. Analysis of efficient population size showed that the outbreak point of SVA worldwide occurred at the end of 2013 with that of subgroup IIb, the current dominant group, in mid 2014.


Asunto(s)
Evolución Molecular , Genoma Viral , Infecciones por Picornaviridae/veterinaria , Picornaviridae/genética , Enfermedades de los Porcinos/virología , Animales , China , Efecto Citopatogénico Viral , Ganglios Linfáticos/virología , Filogenia , Picornaviridae/aislamiento & purificación , Infecciones por Picornaviridae/virología , Sus scrofa , Porcinos
10.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115877

RESUMEN

Many new astroviruses have been identified in humans and other animals in recent years, but only a few have been successfully isolated for extensive biological study. Here, we report an unusual isolation of a porcine astrovirus 5 (PAstV5) strain from a clinical classical swine fever virus (CSFV)-infected tissue sample. Incubation of porcine PK-15 cells with an extract of the CSFV-positive tissue resulted in unexpected cytopathic effects (CPEs), and high-throughput viromic sequencing identified PAstV5 and porcine circovirus type 2 (PCV2) as well as CSFV in the culture. After clearance of CSFV and PCV2, a pure PAstV5 strain, named PAstV5-AH29-2014, was obtained. Analysis revealed virus of typical astroviral morphology with a genome of 6,448 nucleotides, sharing 84.3 to 88.9% nucleotide identity with previously published PAstV5 strains. A mechanistic study showed that CSFV coinfection was likely an important factor for successful isolation by significantly enhancing PAstV5 replication in PK-15 cells via suppression of a type I interferon response. Altogether, PAstV5-AH29-2014, as the first isolated PAstV5 strain, will provide critical material for the investigation of the biological and pathogenic properties of this virus as well as for future development of relevant biological and diagnostic reagents.IMPORTANCE Porcine astroviruses are mainly associated with gastroenteritis and neurological diseases in pigs, and five genotypes have been identified (PAstV1-5). However, the clinical manifestations of genotypes other than PAstV1 have not yet been determined because of the failure of in vitro virus isolation. Here, we report a surprising isolation of a PAstV5 strain from a clinical classical swine fever virus (CSFV)-infected tissue sample, which can stably passage in PK-15 cells, and coinfection with CSFV significantly enhanced the replication of PAstV5, possibly through suppression of beta interferon production. Thus, the first isolated PAstV5 strain will be useful for investigating the biological and pathogenic properties of this virus, and the findings obtained in this study provide new insights into defining the interaction mechanism between CSFV and PAstV5.


Asunto(s)
Astroviridae/fisiología , Virus de la Fiebre Porcina Clásica/fisiología , Peste Porcina Clásica/virología , Animales , Astroviridae/clasificación , Astroviridae/aislamiento & purificación , Astroviridae/patogenicidad , Línea Celular , Circovirus/aislamiento & purificación , Circovirus/fisiología , Peste Porcina Clásica/patología , Virus de la Fiebre Porcina Clásica/aislamiento & purificación , Coinfección , Efecto Citopatogénico Viral , Genoma Viral/genética , Interferón beta/metabolismo , Interferón beta/farmacología , Metagenómica , Interacciones Microbianas , Filogenia , ARN Viral/genética , Porcinos , Replicación Viral/efectos de los fármacos
11.
Transbound Emerg Dis ; 67(5): 2249-2253, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32277601

RESUMEN

Getah virus (GETV) is a mosquito-borne virus that is widely distributed in Asian countries including China, in which the first case of equine GETV infection was reported in Guangdong province in August 2018. In this study, GETVs were detected in two classical swine fever virus-positive samples collected from swine herds in Foshan city, Guangdong province, 2018. Infection of porcine PK-15 cells produced rapid cytopathic effects (CPEs), including shrinking, rounding and detaching, and peak titre of 109.3 TCID50 /ml occurred at 24 hr post-infection. Electron microscopy and ultra-thin sectioning revealed spherical GETV particles of 70 nm diameter with an isometric interior and are found to be lining the outer membrane of infected cells. Whole-genome analysis showed that the two GETV isolates are identical to each other and cluster with Group III strains of GETV, sharing 96.1%-99.7% nucleotide sequence identity with all available reference strains. The most closely relative of the obtained GETV isolates was porcine strain HNJZ-S2 from Henan province (99.7%), with 98.6% sequence identity shared with equine GETV strain GZ201808 first identified in Guangdong province, indicating different sources for porcine and equine GETV infections in this region. No evidence of GETV infection was found in 497 archived porcine samples collected between 1990 and 2018 in Guangdong province.

12.
BMC Vet Res ; 16(1): 14, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937302

RESUMEN

BACKGROUND: Virus neutralization test (VNT) is widely used for serological survey of classical swine fever (CSF) and efficacy evaluation of CSF vaccines. However, VNT is a time consuming procedure that requires cell culture and live virus manipulation. C-strain CSF vaccine is the most frequently used vaccine for CSF control and prevention. In this study, we presented a neutralizing monoclonal antibody (mAb) based competitive enzyme-linked immunosorbent assay (cELISA) with the emphasis on the replacement of VNT for C-strain post-vaccination monitoring. RESULTS: One monoclonal antibody (6B211) which has potent neutralizing activity against C-strain was generated. A novel cELISA was established and optimized based on the strategy that 6B211 can compete with C-strain induced neutralizing antibodies in pig serum to bind capture antigen C-strain E2. By testing C-strain VNT negative pig sera (n = 445) and C-strain VNT positive pig sera (n = 70), the 6B211 based cELISA showed 100% sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval: 100 to 100%). The C-strain antibody can be tested in pigs as early as 7 days post vaccination with the cELISA. By testing pig sera (n = 139) in parallel, the cELISA showed excellent agreement (Kappa = 0.957) with VNT. The inhibition rate of serum samples in the cELISA is highly correlated with their titers in VNT (r2 = 0.903, p < 0.001). In addition, intra- and inter-assays of the cELISA exhibited acceptable repeatability with low coefficient of variations (CVs). CONCLUSIONS: This novel cELISA demonstrated excellent agreement and high level correlation with VNT. It is a reliable tool for sero-monitoring of C-strain vaccination campaign because it is a rapid, simple, safe and cost effective assay that can be used to monitor vaccination-induced immune response at the population level.


Asunto(s)
Anticuerpos Antivirales/sangre , Peste Porcina Clásica/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Pruebas de Neutralización/veterinaria , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Virus de la Fiebre Porcina Clásica/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Ratones Endogámicos BALB C , Pruebas de Neutralización/métodos , Sensibilidad y Especificidad , Pruebas Serológicas/métodos , Pruebas Serológicas/veterinaria , Porcinos , Vacunación/veterinaria
13.
Vet Microbiol ; 237: 108403, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31585656

RESUMEN

Classical swine fever (CSF) still threatens the swine industry in China, with genotype 2 isolates of CSFV dominating the epizootics. In 2018 the first E2 subunit marker vaccine against CSFV (Tian Wen Jing, TWJ-E2®), containing a baculovirus-expressed E2 glycoprotein of a genotype 1.1 vaccine strain, was officially licensed in China and commercialized. To evaluate the cross-protective efficacy of TWJ-E2 against different virulent genotype 2 Chinese field isolates (2.1b, 2.1c, 2.1 h, and 2.2), 4-week-old pigs were immunized with the TWJ-E2 vaccine according to the manufacturer's instructions and then challenged with genotype 2 strains. A group vaccinated with the conventional C-strain vaccine was included for comparison. TWJ-E2 vaccinated pigs developed higher levels of E2 and neutralizing antibodies than those receiving the commercial C-strain vaccine. All TWJ-E2 and C-strain vaccinated pigs survived challenge without development of fever, clinical signs or pathological lesions. In contrast, all unvaccinated control pigs displayed severe CSF disease with 40-100% mortalities by 24 days post challenge. None of the TWJ-E2 and C-strain vaccinated pigs developed viremia, viral shedding from tonsils, Erns protein in the sera, or viral RNA loads in different tissues after challenge, all of which were detected in the challenged unvaccinated controls. We conclude that vaccination of young pigs with TWJ-E2 provides complete immune protection against genotypically heterologous CSFVs and prevents viral shedding after challenge, with an efficacy at least comparable to that elicited by the conventional C-strain vaccine.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Peste Porcina Clásica/prevención & control , Genotipo , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/sangre , Subunidades de Proteína/inmunología , Porcinos , Vacunas de Subunidad
14.
Vet Microbiol ; 232: 114-120, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31030834

RESUMEN

Classical swine fever (CSF) remains an important pig disease in China, where it usually presents with mild or atypical clinical manifestations, with large scale outbreaks rarely seen. This has led to speculation about the possible circulation of viral strains of low virulence. To investigate this possibility, five field isolates within the predominant genotype 2 (2.1b, 2.1c, 2.1 h and 2.2) were evaluated and compared by experimental infection of naturally farrowed but colostrum-deprived piglets. All infected piglets displayed clinical signs, including persistent high fever, depression, anorexia, dyspnea, conjunctivitis, constipation, and hesitant gait. Typical pathological lesions, including pulmonary edema, hemorrhagic or cellulosic exudation, and swelling and hemorrhage of lymph nodes, were observed. Viremia and Erns protein expression in the blood of all infected animals were detectable from 3 to 5 days post infection (DPI), their presence correlating with the onset of fever, clinical signs and leukopenia. E2 antibody did not develop in any of the field CSFV-infected piglets during the disease course, while Erns antibody was detectable in 4-56% of infected animals at various time points. Mortalities ranged from 20 to 80% within 21 DPI, progressing to 100% by 43 DPI. Based on clinical scores and fatalities within 21 DPI, 2 of the 5 field isolates were classified as of moderate virulence and 3 of high virulence; i.e., no field isolates of low virulence were identified. The study has provided data supporting the use of these isolates as challenge viruses to evaluate the efficacy of current CSF vaccines.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/patogenicidad , Peste Porcina Clásica/patología , Genotipo , Animales , Anticuerpos Antivirales/sangre , China , Peste Porcina Clásica/sangre , Pulmón/patología , Ganglios Linfáticos/patología , Filogenia , Porcinos , Viremia , Virulencia
15.
iScience ; 3: 87-101, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-30428332

RESUMEN

Classical swine fever virus (CSFV) can utilize diverse host signaling pathways for its replication; however, the cross talk between mammalian target of rapamycin (mTOR) and CSFV remains unknown. Here, we describe the potential role of mTOR complex 1 (mTORC1) in promoting CSFV replication via virus-induced hypophosphorylation of the Akt/mTORC1/S6 pathway, especially at an early stage of viral infection. Conversely, activation of mTORC1 inhibited the replication of CSFV. Furthermore, we revealed the underlying mechanisms of mTORC1 pathway in mediating CSFV replication; in addition, our data also showed that CSFV-induced transient inhibition of mTORC1 elicited a negative feedback activation of PI3K/Akt/mTORC1pathway, likely contributing to maintain the dynamic balance between viral replication and host cell survival. This study has provided strong evidence showing how CSFV utilizes mTORC1 pathway for viral replication at an early stage in the viral replicative cycle and how the mTORC1 rescues itself by eliciting a feedback loop to limit viral replication and maintain cell survival.

16.
Virus Res ; 250: 95-103, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29689280

RESUMEN

The family Circoviridae comprises a large group of small circular single-stranded DNA viruses with several members causing severe pig and poultry diseases. In recent years the number of new viruses within the family has had an explosive increase showing a high level of genetic diversity and a broad host range. In this report we describe two more circoviruses identified from bats in Yunnan and Heilongjiang provinces in China. Full genome sequencing has revealed that these bat associated circoviruses (bat ACV) should be classified as new species within the genus Circovirus based on the demarcation criteria of the International Committee on the Taxonomy of Viruses (ICTV). The most striking result is the novel finding of a 21-28 nt polythymidine (poly-T) tract in the 3' terminal intergenic region of bat ACV isolates from Heilongjiang province. To understand its role in viral replication, a wild type bat ACV and a mutated version with the entire poly-T deleted were rescued through construction of infectious clones. Replication comparison in vitro showed that the poly-T is not essential for viral replication. Identification of additional bat ACV isolates and study of their biological characteristics will be the main task in future to understand the potential roles of bats in transmission of circoviruses to terrestrial mammals and humans.


Asunto(s)
Quirópteros/virología , Circovirus/clasificación , ADN Intergénico , Poli T/genética , Replicación Viral/genética , Animales , China , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Circovirus/aislamiento & purificación , Variación Genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Secuenciación Completa del Genoma
17.
Front Microbiol ; 8: 731, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496435

RESUMEN

Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and ß-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF.

18.
Genome Announc ; 5(14)2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28385846

RESUMEN

The complete genome sequence of a sub-subgenotype 2.1i isolate of classical swine fever virus (CSFV), GD317/2011, was determined. Notably, GD317/2011 is distant from the sub-subgenotype 2.1b isolate HEBZ at genes of Erns, E1, E2, P7, NS2, NS5A and the 3'-nontranslated region (3'-NTR) but is closely related to that at genes of Npro, Core, NS3, NS4A, NS4B, and NS5B.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...