Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Neurol ; 78(10): 1249-1254, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424272

RESUMEN

Importance: The X chromosome represents 5% of the human genome in women and men, and its influence on cognitive aging and Alzheimer disease (AD) is largely unknown. Objective: To determine whether the X chromosome is associated with sex-specific cognitive change and tau pathology in aging and AD. Design, Setting, Participants: This study examined differential gene expression profiling of the X chromosome from an RNA sequencing data set of the dorsolateral prefrontal cortex obtained from autopsied, elderly individuals enrolled in the Religious Orders Study and Rush Memory and Aging Project joint cohorts. Samples were collected from the cohort study with enrollment from 1994 to 2017. Data were last analyzed in May 2021. Main Outcomes and Measures: The main analysis examined whether X chromosome gene expression measured by RNA sequencing of the dorsolateral prefrontal cortex was associated with cognitive change during aging and AD, independent of AD pathology and at the transcriptome-wide level in women and men. Whether X chromosome gene expression was associated with neurofibrillary tangle burden, a measure of tau pathology that influences cognition, in women and men was also explored. Results: Samples for RNA sequencing of the dorsolateral prefrontal cortex were obtained from 508 individuals (mean [SD] age at death, 88.4 [6.6] years; 315 [62.0%] were female; 197 [38.8%] had clinical diagnosis of AD at death; 293 [58.2%] had pathological diagnosis of AD at death) enrolled in the Religious Orders Study and Rush Memory and Aging Project joint cohorts and were followed up annually for a mean (SD) of 6.3 (3.9) years. X chromosome gene expression (29 genes), adjusted for age at death, education, and AD pathology, was significantly associated with cognitive change at the genome-wide level in women but not men. In the majority of identified X genes (19 genes), increased expression was associated with slower cognitive decline in women. In contrast with cognition, X chromosome gene expression (3 genes), adjusted for age at death and education, was associated with neuropathological tau burden at the genome-wide level in men but not women. Conclusions and Relevance: In this study, the X chromosome was associated with cognitive trajectories and neuropathological tau burden in aging and AD in a sex-specific manner. This is important because specific X chromosome factors could contribute risk or resilience to biological pathways of aging and AD in women, men, or both.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer , Cromosomas Humanos X , Corteza Prefontal Dorsolateral , Caracteres Sexuales , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Cognición , Disfunción Cognitiva , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Transcriptoma
2.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848093

RESUMEN

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Animales , Femenino , Masculino , Ratones , Caracteres Sexuales , Testículo , Cromosoma X/genética , Cromosoma Y
3.
RNA Biol ; 10(7): 1093-106, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23673382

RESUMEN

MicroRNAs (miRNAs) and other small non-coding RNAs (sncRNAs) are post-transcriptional regulators of gene expression, playing key roles in neuronal development, plasticity, and disease. Transcriptome deregulation caused by miRNA dysfunction has been associated to neurodegenerative diseases. Parkinson disease (PD) is the second most common neurodegenerative disease showing deregulation of the coding and small non-coding transcriptome. On profiling sncRNA in PD brain areas differently affected, we found that upregulation of a small vault RNA (svtRNA2-1a) is widespread in PD brains, occurring early in the course of the disease (at pre-motor stages). SvtRNA2-1a biogenesis was dependent on Dicer activity on its precursor (vtRNA2-1) but independent of Drosha endonuclease, unlike the canonical miRNAs. Although endogenous svtRNA2-1a was enriched in Ago-2 immunoprecipitates in differentiated SH-SY5Y neuronal cells, overexpression of svtRNA2-1a induced subtle transcriptomic changes, suggesting that gene expression regulation may involve other mechanisms than mRNA decay only. Function enrichment analysis of the genes deregulated by svtRNA2-1a overexpression or svtRNA2-1a predicted targets identified pathways related to nervous system development and cell type specification. The expression pattern of svtRNA2-1a during development and aging of the human brain and the detrimental consequences of a svtRNA2-1a mimic overexpression in neuronal cells further indicate that low svtRNA2-1a levels may be important for the maintenance of neurons. Our results suggest that early svtRNA2-1a upregulation in PD may contribute to perturbations of gene expression networks, underlying metabolic impairment and cell dysfunction. A better understanding of the pathways regulated by svtRNA2-a, and also the mechanisms regulating its expression should facilitate the identification of new targets for therapeutic approaches in PD.


Asunto(s)
Regulación de la Expresión Génica , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Pequeño no Traducido/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Encéfalo/metabolismo , Diferenciación Celular/genética , Línea Celular , Expresión Génica , Humanos , Datos de Secuencia Molecular , Neuronas/citología , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Enfermedad de Parkinson/tratamiento farmacológico , ARN Pequeño no Traducido/química , Reproducibilidad de los Resultados , Ribonucleasa III/metabolismo , Alineación de Secuencia , Transcriptoma , Regulación hacia Arriba
4.
Hum Mol Genet ; 20(15): 3067-78, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21558425

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators, playing key roles in neuronal development, plasticity and disease. Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the presence of protein inclusions or Lewy bodies and a progressive loss of dopaminergic neurons in the midbrain. Here, we have evaluated miRNA expression deregulation in PD brain samples. MiRNA expression profiling revealed decreased expression of miR-34b and miR-34c in brain areas with variable neuropathological affectation at clinical (motor) stages (Braak stages 4 and 5) of the disease, including the amygdala, frontal cortex, substantia nigra and cerebellum. Furthermore, misregulation of miR-34b/c was detected in pre-motor stages (stages 1-3) of the disease, and thus in cases that did not receive any PD-related treatment during life. Depletion of miR-34b or miR-34c in differentiated SH-SY5Y dopaminergic neuronal cells resulted in a moderate reduction in cell viability that was accompanied by altered mitochondrial function and dynamics, oxidative stress and reduction in total cellular adenosin triphosphate content. MiR-34b/c downregulation was coupled to a decrease in the expression of DJ1 and Parkin, two proteins associated to familial forms of PD that also have a role in idiopathic cases. Accordingly, DJ1 and Parkin expression was reduced in PD brain samples displaying strong miR-34b/c downregulation. We propose that early deregulation of miR-34b/c in PD triggers downstream transcriptome alterations underlying mitochondrial dysfunction and oxidative stress, which ultimately compromise cell viability. A better understanding of the cellular pathways controlling and/or controlled by miR-34b/c should allow identification of targets for development of therapeutic approaches.


Asunto(s)
MicroARNs/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Western Blotting , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Nucleic Acids Res ; 38(20): 7219-35, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20591823

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder that predominantly affects neurons of the forebrain. We have applied the Illumina massively parallel sequencing to deeply analyze the small RNA populations of two different forebrain areas, the frontal cortex (FC) and the striatum (ST) of healthy individuals and individuals with HD. More than 80% of the small-RNAs were annotated as microRNAs (miRNAs) in all samples. Deep sequencing revealed length and sequence heterogeneity (IsomiRs) for the vast majority of miRNAs. Around 80-90% of the miRNAs presented modifications in the 3'-terminus mainly in the form of trimming and/or as nucleotide addition variants, while the 5'-terminus of the miRNAs was specially protected from changes. Expression profiling showed strong miRNA and isomiR expression deregulation in HD, most being common to both FC and ST. The analysis of the upstream regulatory regions in co-regulated miRNAs suggests a role for RE1-Silencing Transcription Factor (REST) and P53 in miRNAs downregulation in HD. The putative targets of deregulated miRNAs and seed-region IsomiRs strongly suggest that their altered expression contributes to the aberrant gene expression in HD. Our results show that miRNA variability is a ubiquitous phenomenon in the adult human brain, which may influence gene expression in physiological and pathological conditions.


Asunto(s)
Encéfalo/metabolismo , Variación Genética , Enfermedad de Huntington/genética , MicroARNs/química , Adulto , Lóbulo Frontal/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/metabolismo , MicroARNs/metabolismo , Neostriado/metabolismo , ARN Pequeño no Traducido/química , Proteínas Represoras/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...