Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Breed ; 44(8): 51, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118867

RESUMEN

Soybean seed oil and protein contents are negatively correlated, posing challenges to enhance both traits simultaneously. Previous studies have identified numerous oil and protein QTLs via single-trait QTL analysis. Multiple-trait QTL methods were shown to be superior but have not been applied to seed oil and protein contents. Our study aimed to evaluate the effectiveness of single- and multiple-trait multiple interval mapping (ST-MIM and MT-MIM, respectively) for these traits using three recombinant inbred line populations from advanced breeding line crosses tested in four environments. Using original and simulated data, we found that MT-MIM did not outperform ST-MIM for our traits with high heritability (H2 > 0.84). Empirically, MT-MIM confirmed only five out of the seven QTLs detected by ST-MIM, indicating single-trait analysis was sufficient for these traits. All QTLs exerted opposite effects on oil and protein contents with varying protein-to-oil additive effect ratios (-0.4 to -4.8). We calculated the economic impact of the allelic variations via estimated processed values (EPV) using the National Oilseed Processors Association (NOPA) and High Yield + Quality (HY + Q) methods. Oil-increasing alleles had positive effects on both EPVNOPA and EPVHY+Q when the protein-to-oil ratio was low (-0.4 to -0.7). However, when the ratio was high (-4.1 to -4.8), oil-increasing alleles increased EPVNOPA and decreased EPVHY+Q, which penalizes low protein meal. In conclusion, single-trait QTL analysis is adequately effective for high heritability traits like seed oil and protein contents. Additionally, the populations' elite pedigrees and varying protein-to-oil ratios provide potential lines for further yield assessment and direct integration into breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01489-2.

2.
Plant Genome ; 16(4): e20415, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38084377

RESUMEN

Soybean [Glycine max (L.) Merr.] is a globally important crop due to its valuable seed composition, versatile feed, food, and industrial end-uses, and consistent genetic gain. Successful genetic gain in soybean has led to widespread adaptation and increased value for producers, processors, and consumers. Specific focus on the nutritional quality of soybean seed composition for food and feed has further elucidated genetic knowledge and bolstered breeding progress. Seed components are historical and current targets for soybean breeders seeking to improve nutritional quality of soybean. This article reviews genetic and genomic foundations for improvement of nutritionally important traits, such as protein and amino acids, oil and fatty acids, carbohydrates, and specific food-grade considerations; discusses the application of advanced breeding technology such as CRISPR/Cas9 in creating seed composition variations; and provides future directions and breeding recommendations regarding soybean seed composition traits.


Asunto(s)
Glycine max , Fitomejoramiento , Glycine max/genética , Fenotipo , Genómica , Valor Nutritivo
3.
Theor Appl Genet ; 136(5): 109, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039870

RESUMEN

KEY MESSAGE: Sucrose in soybean seeds is desirable for many end-uses. Increased sucrose contents were discovered to associate with a chromosome 16 deletion resulting from fast neutron irradiation. Soybean is one of the most economically important crops in the United States. A primary end-use of soybean is for livestock feed. Therefore, genetic improvement of seed composition is one of the most important goals in soybean breeding programs. Sucrose is desired in animal feed due to its role as an easily digestible energy source. An elite soybean line was irradiated with fast neutrons and the seed from plants were screened for altered seed composition with near-infrared spectroscopy (NIR). One mutant line, G15FN-54, was found to have higher sucrose content (8-9%) than the parental line (5-6%). Comparative genomic hybridization (CGH) revealed three large deletions on chromosomes (Chrs) 10, 13, and 16 in the mutant, which were confirmed through whole genome sequencing (WGS). A bi-parental population derived from the mutant G15FN-54 and the cultivar Benning was developed to conduct a bulked segregant analysis (BSA) with SoySNP50K BeadChips, revealing that the deletion on Chr 16 might be responsible for the altered phenotype. The mapping result using the bi-parental population confirmed that the deletion on Chr 16 conferred elevated sucrose content and a total of 21 genes are located within this Chr 16 deletion. NIR and high-pressure liquid chromatography (HPLC) were used to confirm the stability of the phenotype across generations in the bi-parental population. The mutation will be useful to understand the genetic control of soybean seed sucrose content.


Asunto(s)
Glycine max , Sacarosa , Humanos , Glycine max/genética , Hibridación Genómica Comparativa , Cromosomas Humanos Par 16/química , Proteínas de Plantas/genética , Fitomejoramiento , Fenotipo , Deleción Cromosómica
4.
Front Plant Sci ; 14: 1308731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173927

RESUMEN

Soybean meal is a major component of livestock feed due to its high content and quality of protein. Understanding the genetic control of protein is essential to develop new cultivars with improved meal protein. Previously, a genomic region on chromosome 20 significantly associated with elevated protein content was identified in the cultivar Danbaekkong. The present research aimed to introgress the Danbaekkong high-protein allele into elite lines with different genetic backgrounds by developing and deploying robust DNA markers. A multiparent population consisting of 10 F5-derived populations with a total of 1,115 recombinant inbred lines (RILs) was developed using "Benning HP" as the donor parent of the Danbaekkong high-protein allele. A new functional marker targeting the 321-bp insertion in the gene Glyma.20g085100 was developed and used to track the Danbaekkong high-protein allele across the different populations and enable assessment of its effect and stability. Across all populations, the high-protein allele consistently increased the content, with an increase of 3.3% in seed protein. A total of 103 RILs were selected from the multiparent population for yield testing in five environments to assess the impact of the high-protein allele on yield and to enable the selection of new breeding lines with high protein and high yield. The results indicated that the high-protein allele impacts yield negatively in general; however, it is possible to select high-yielding lines with high protein content. An analysis of inheritance of the Chr 20 high-protein allele in Danbaekkong indicated that it originated from a Glycine soja line (PI 163453) and is the same as other G. soja lines studied. A survey of the distribution of the allele across 79 G. soja accessions and 35 Glycine max ancestors of North American soybean cultivars showed that the high-protein allele is present in all G. soja lines evaluated but not in any of the 35 North American soybean ancestors. These results demonstrate that G. soja accessions are a valuable source of favorable alleles for improvement of protein composition.

5.
Front Plant Sci ; 13: 893652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774827

RESUMEN

Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine-threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.

6.
Front Plant Sci ; 13: 859109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557723

RESUMEN

Soybean [Glycine max (L.) Merr.] seeds have an amino acid profile that provides excellent viability as a food and feed protein source. However, low concentrations of an essential amino acid, methionine, limit the nutritional utility of soybean protein. The objectives of this study were to identify genomic associations and evaluate the potential for genomic selection (GS) for methionine content in soybean seeds. We performed a genome-wide association study (GWAS) that utilized 311 soybean accessions from maturity groups IV and V grown in three locations in 2018 and 2019. A total of 35,570 single nucleotide polymorphisms (SNPs) were used to identify genomic associations with proteinogenic methionine content that was quantified by high-performance liquid chromatography (HPLC). Across four environments, 23 novel SNPs were identified as being associated with methionine content. The strongest associations were found on chromosomes 3 (ss715586112, ss715586120, ss715586126, ss715586203, and ss715586204), 8 (ss715599541 and ss715599547) and 16 (ss715625009). Several gene models were recognized within proximity to these SNPs, such as a leucine-rich repeat protein kinase and a serine/threonine protein kinase. Identification of these linked SNPs should help soybean breeders to improve protein quality in soybean seeds. GS was evaluated using k-fold cross validation within each environment with two SNP sets, the complete 35,570 set and a subset of 248 SNPs determined to be associated with methionine through GWAS. Average prediction accuracy (r 2) was highest using the SNP subset ranging from 0.45 to 0.62, which was a significant improvement from the complete set accuracy that ranged from 0.03 to 0.27. This indicated that GS utilizing a significant subset of SNPs may be a viable tool for soybean breeders seeking to improve methionine content.

7.
J Econ Entomol ; 114(3): 1329-1335, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33760061

RESUMEN

Host-plant resistance (HPR) remains a vital tool to manage soybean aphid (Aphis glycines Matsumura), a major pest of soybean in Midwestern United States and southern Canada. HPR can be overcome by virulent biotypes of A. glycines; thus, in order to increase the durability of resistant cultivars, HPR needs to be deployed strategically. To improve the strategic deployment, a complete understanding of HPR in existing resistant germplasm will help ensure HPR success. In this study, we characterized HPR soybean to determine antibiosis and antixenosis categories of resistance to different biotypes of A. glycines. No-choice and free-choice tests were performed on 11 previously reported plant introductions (PIs) possessing resistance to at least one A. glycines biotype (1, 2, and 3). Overall, we found that the PIs manifested differences of a particular resistance category in response to infestation by different biotypes. Our data from no-choice tests indicate that all tested PIs possess antibiosis-based resistance to three biotypes. However, the strength of antibiosis was variable as some PIs showed stronger antibiosis toward a given biotype than others. All tested PIs manifested antixenosis, in addition to antibiosis. Furthermore, detached leaf assays revealed that resistance to A. glycines was not retained in excised soybean leaves. Characterization of resistance in this study can contribute to develop strategies for future deployment of resistant cultivars developed from these PIs.


Asunto(s)
Áfidos , Animales , Antibiosis , Canadá , Medio Oeste de Estados Unidos , Glycine max/genética
8.
Mol Breed ; 41(4): 27, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309353

RESUMEN

Composition of fatty acids (FAs) in soybean seed is important for the quality and uses of soybean oil. Using gas chromatography, we have measured soybean FAs profiles of 621 soybean accessions (maturity groups I through IV) grown in five different environments; Columbus, OH (2015), Wooster, OH (2014 and 2015), Plymouth, NC (2015), and Urbana, IL (2015). Using publicly available SoySNP50K genotypic data and the FA profiles from this study, a genome-wide association analysis was completed with a compressed mixed linear model to identify 43 genomic regions significantly associated with a fatty acid at a genome wide significance threshold of 5%. Among these regions, one and three novel genomic regions associated with palmitic acid and stearic acid, respectively, were identified across all five environments. Additionally, nine novel environment-specific FA-related genomic regions were discovered providing new insights into the genetics of soybean FAs. Previously reported FA-related loci, such as FATB1a, SACPD-C, and KASIII, were also confirmed in this study. Our results will be useful for future functional studies and marker-assisted breeding for soybean FAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01216-1.

9.
Mol Breed ; 41(8): 48, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37309543

RESUMEN

Soybean is the world's largest source of protein for animal feed and the second largest source of vegetable oil. Improving the seed protein of soybean without negatively affecting yield and oil content is an important goal for soybean breeders. A population consisting of 132 recombinant inbred lines (RILs) was developed by crossing an elite breeding line, G00-3213 with a plant introduction, PI 594458A, with elevated protein content. In 2016 and 2017, each of the RILs was grown as a single row in Watkinsville, GA, while in 2018, the population was grown at two locations. The seed composition of RILs was analyzed with near-infrared (NIR) spectroscopy. The RIL population was genotyped using the SoySNP6k BeadChip for quantitative trait locus (QTL) mapping. Significant genotype × environment interaction was observed. QTL analyses in and across four environments identified 16, 10, 10, 16, and 5 QTLs for protein, oil, sucrose, and normalized cysteine and methionine contents, respectively. QTLs for protein content identified on chromosomes (Chrs) 3, 6, 13, and 20 were detected in multiple environments. Eight genomic regions on Chrs 3, 6, 8, 10, 13, 17, and 20 were detected that influenced two to four traits, indicating that pleiotropic or linkage effects of these loci may influence multiple seed composition traits. The results of this research provide additional genomic resources for genetic improvement of seed composition and help breeders to better understand the environmental impacts on these QTLs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01242-z.

10.
Molecules ; 25(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825674

RESUMEN

Soybean seed composition has a profound impact on its market value and commercial use as an important commodity. Increases in oil and protein content have been historically pursued by breeders and genetic engineers; consequently, rapid methods for their quantification are well established. The interest in complete carbohydrate profiles in mature seeds, on the other hand, has recently increased due to numerous attempts to redirect carbohydrates into oil and protein or to offer specialty seed with a specific sugar profile to meet animal nutritional requirements. In this work, a sequential protocol for quantifying reserve and structural carbohydrates in soybean seed was developed and validated. Through this procedure, the concentrations of soluble sugars, sugar alcohols, starch, hemicellulose, and crystalline cellulose can be determined in successive steps from the same starting material using colorimetric assays, LC-MS/MS, and GC-MS. The entire workflow was evaluated using internal standards to estimate the recovery efficiency. Finally, it was successfully applied to eight soybean genotypes harvested from two locations, and the resulting correlations of carbohydrate and oil or protein are presented. This methodology has the potential not only to guide soybean cultivar optimization processes but also to be expanded to other crops with only slight modifications.


Asunto(s)
Carbohidratos/análisis , Glycine max/química , Aceites de Plantas/análisis , Semillas/química , Proteínas de Soja/análisis , Flujo de Trabajo , Cromatografía Liquida , Espectrometría de Masas en Tándem
11.
Plant Genome ; 12(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31290916

RESUMEN

Schwabe [teleomorph: Gibberella zeae (Schweintiz) Petch] has been identified as a pathogen of soybean [ (L.) Merr.] causing seed, seedling damping-off and root rot in North America. A major quantitative disease resistance locus (QDRL) that contributed 38.5% of the phenotypic variance toward in soybean was previously identified through mapping of a recombinant inbred line (RIL) population derived from a cross between 'Wyandot' and PI 567301B. This major QDRL mapped to chromosome 8 to a predicted 305 kb region harboring 36 genes. This locus maps near the locus for soybean cyst nematode (SCN) and the locus contributing to seed coat color. Long-read sequencing of the region was completed and variations in gene sequence and gene order compared with the 'Williams 82' reference were identified. Molecular markers were developed for genes within this region and mapped in the original population, slightly narrowing the region of interest. Analyses of the hybrid genome reassembly using three previously published bacterial artificial chromosome (BAC) sequences (BAC56G2, BAC104J7, and BAC77G7-a) combined with RNA-sequencing narrowed the region making candidate gene identification possible. The markers within this region may be used for marker-assisted selection (MAS). There were 10 differentially expressed genes between resistant and susceptible lines, with four of these candidates also located within the genomic interval defined by the flanking markers. These genes included an actin-related protein 2/3 complex subunit, an unknown protein, a hypothetical protein, and a chalcone synthase 3.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/fisiología , Glycine max/genética , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genoma de Planta , Hibridación Genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN de Planta , Análisis de Secuencia de ARN , Glycine max/microbiología
12.
Theor Appl Genet ; 132(11): 2965-2983, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31324928

RESUMEN

KEY MESSAGE: Protein content of soybean is critical for utility of soybean meal. A fast-neutron-induced deletion on chromosome 12 was found to be associated with increased protein content. Soybean seed composition affects the utility of soybean, and improving seed composition is an essential breeding goal. Fast neutron radiation introduces genomic mutations resulting in novel variation for traits of interest. Two elite soybean lines were irradiated with fast neutrons and screened for altered seed composition. Twenty-three lines with altered protein, oil, or sucrose content were selected based on near-infrared spectroscopy data from five environments and yield tested at five locations. Mutants with significantly increased protein averaged 19.1-36.8 g kg-1 more protein than the parents across 10 environments. Comparative genomic hybridization (CGH) identified putative mutations in a mutant, G15FN-12, that has 36.8 g kg-1 higher protein than the parent genotype, and whole genome sequencing (WGS) of the mutant has confirmed these mutations. An F2:3 population was developed from G15FN-12 to determine association between genomic changes and increased protein content. Bulked segregant analysis of the population using the SoySNP50K BeadChip identified a CGH- and WGS-confirmed deletion on chromosome 12 to be responsible for elevated protein content. The population was genotyped using a KASP marker designed at the mutation region, and significant association (P < 0.0001) between the deletion on chromosome 12 and elevated protein content was observed and confirmed in the F3:4 generation. The F2 segregants homozygous for the deletion averaged 27 g kg-1 higher seed protein and 8 g kg-1 lower oil than homozygous wild-type segregants. Mutants with altered seed composition are a new resource for gene function studies and provide elite materials for genetic improvement of seed composition.


Asunto(s)
Glycine max/química , Proteínas de Plantas/análisis , Semillas/química , Mapeo Cromosómico , Hibridación Genómica Comparativa , Neutrones Rápidos , Genotipo , Mutagénesis , Proteínas de Plantas/genética , Semillas/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia , Glycine max/genética
13.
Theor Appl Genet ; 132(6): 1639-1659, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30806741

RESUMEN

KEY MESSAGE: Genomic regions associated with seed protein, oil and amino acid contents were identified by genome-wide association analyses. Geographic distributions of haplotypes indicate scope of improvement of these traits. Soybean [Glycine max (L.) Merr.] protein and oil are used worldwide in feed, food and industrial materials. Increasing seed protein and oil contents is important; however, protein content is generally negatively correlated with oil content. We conducted a genome-wide association study using phenotypic data collected from five environments for 621 accessions in maturity groups I-IV and 34,014 markers to identify quantitative trait loci (QTL) for seed content of protein, oil and several essential amino acids. Three and five genomic regions were associated with seed protein and oil contents, respectively. One, three, one and four genomic regions were associated with cysteine, methionine, lysine and threonine content (g kg-1 crude protein), respectively. As previously shown, QTL on chromosomes 15 and 20 were associated with seed protein and oil contents, with both exhibiting opposite effects on the two traits, and the chromosome 20 QTL having the most significant effect. A multi-trait mixed model identified trait-specific QTL. A QTL on chromosome 5 increased oil with no effect on protein content, and a QTL on chromosome 10 increased protein content with little effect on oil content. The chromosome 10 QTL co-localized with maturity gene E2/GmGIa. Identification of trait-specific QTL indicates feasibility to reduce the negative correlation between protein and oil contents. Haplotype blocks were defined at the QTL identified on chromosomes 5, 10, 15 and 20. Frequencies of positive effect haplotypes varied across maturity groups and geographic regions, providing guidance on which alleles have potential to contribute to soybean improvement for specific regions.


Asunto(s)
Aminoácidos/metabolismo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Aceite de Soja/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Desequilibrio de Ligamiento , Fenotipo , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética
14.
Sci Rep ; 8(1): 9911, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967407

RESUMEN

While the pleasant scent of aromatic rice is making it more popular, with demand for aromatic rice expected to rise in future, varieties of this have low yield potential. Genetic diversity and population structure of aromatic germplasm provide valuable information for yield improvement which has potential market value and farm profit. Here, we show diversity and population structure of 113 rice germplasm based on phenotypic and genotypic traits. Phenotypic traits showed that considerable variation existed across the germplasm. Based on Shannon-Weaver index, the most variable phenotypic trait was lemma-palea color. Detecting 140 alleles, 11 were unique and suitable as a germplasm diagnostic tool. Phylogenetic cluster analysis using genotypic traits classified germplasm into three major groups. Moreover, model-based population structure analysis divided all germplasm into three groups, confirmed by principal component and neighbors joining tree analyses. An analysis of molecular variance (AMOVA) and pairwise FST test showed significant differentiation among all population pairs, ranging from 0.023 to 0.068, suggesting that all three groups differed. Significant correlation coefficient was detected between phenotypic and genotypic traits which could be valuable to select further improvement of germplasm. Findings from this study have the potential for future use in aromatic rice molecular breeding programs.


Asunto(s)
Repeticiones de Microsatélite , Oryza/genética , Filogenia , Análisis de Varianza , Bangladesh , Frecuencia de los Genes , Variación Genética , Genética de Población , Oryza/fisiología , Polimorfismo Genético , Carácter Cuantitativo Heredable
15.
J Econ Entomol ; 111(1): 428-434, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29220502

RESUMEN

Halyomorpha halys (Stål; Hemiptera: Pentatomidae), brown marmorated stink bug (BMSB), is a polyphagous nonnative insect first found in the United States in 1996. As of 2017, BMSB has been detected in 43 states and is a severe agricultural pest in mid-Atlantic states. On soybean, Glycine max (L.) Merr (Fabales: Fabaceae), damage from BMSB infestation ranges from puncture marks with seed discoloration and deformities to seed and pod abortion. Host plant resistance has been used for managing pest populations and mitigating soybean yield losses caused by neotropical stink bugs (Eushistus heros, Nezara viridula, and Piezodorus guildinii) in Brazil and on the U.S. Gulf Coast. We evaluated maturity group III plant introductions (PIs) for resistance to BMSB damage. In 2014, field cage choice tests of 106 PIs revealed a range of both BMSB damage incidence and severity. In field choice tests, PIs 085665 and 097139 showed the lowest incidence of BMSB damage and seed weight loss due to BMSB, while PIs 243532, 243540, and 567252 had the highest. In whole plant no-choice tests, PIs 085665 and 097139 also had high levels of resistance. However, PI 085665 had a higher incidence of damage but lower seed weight loss than PI 097139, which may suggest bimodal resistance. Moreover, PIs 085665 and 097139 are from Japan and North Korea, respectively, two geographically isolated countries where BMSB is native. Thus, further characterization of host plant resistance to BMSB in each of these lines may elucidate distinct mechanisms that could be synergistic if stacked in breeding lines.


Asunto(s)
Antibiosis , Glycine max/fisiología , Herbivoria , Heterópteros/fisiología , Animales , Heterópteros/crecimiento & desarrollo , Ninfa/fisiología , Ohio , Glycine max/genética
16.
BMC Genomics ; 18(1): 472, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28645245

RESUMEN

BACKGROUND: Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. RESULTS: The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. CONCLUSIONS: This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.


Asunto(s)
Alelos , Áfidos/fisiología , Perfilación de la Expresión Génica , Glycine max/genética , Glycine max/fisiología , Animales , Cromosomas de las Plantas/genética , Sitios Genéticos/genética , ARN Mensajero/genética
17.
ScientificWorldJournal ; 2016: 2796720, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27127800

RESUMEN

The study was conducted to investigate genetic variability among 113 aromatic and fine local rice genotypes of which five were exotic in origin. The test genotypes were evaluated for 19 growth traits, yield components, and yield. All the quantitative traits varied significantly among the test genotypes. High heritability along with high genetic advance was observed for flag leaf area, secondary branches per panicle, filled grains per panicle, grain length, grain breadth, grain length breadth ratio, and 1000 grain weight. Such findings suggested preponderance of additive gene action in gene expression for these characters. Grain yield was significantly and positively correlated with days to flowering, days to maturity, panicle length, filled grains per panicle, and 1000 grain weight. According to D (2) cluster analysis, 113 test genotypes formed 10 clusters. Selection of parents from the clusters V and X followed by hybridization would possibly result in desirable heterosis for the development of heterotic rice hybrids. Finally, molecular characterizations of the studied germplasm are required for high resolution QTL mapping and validating the presence of candidate genes responsible for valuable characters.


Asunto(s)
Oryza/genética , Carácter Cuantitativo Heredable , Semillas/genética , Análisis de Varianza , Bangladesh , Análisis por Conglomerados , Ecotipo , Genotipo , Análisis de Componente Principal
18.
J Econ Entomol ; 109(1): 426-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26578627

RESUMEN

Host plant resistance to the soybean aphid, Aphis glycines Matsumura, is an effective means of controlling populations of this introduced pest species in the United States. Rag (Resistance to Aphis glycines) genes identified in soybean germplasm have been incorporated into commercial cultivars, but differential responses by soybean aphid biotypes to the Rag genes have made understanding mechanisms underlying resistance associated with Rag genes increasingly important. We compared the behavior of biotype 2 aphids on the resistant soybean line PI243540, which is a source of Rag2, and the susceptible cultivar Wyandot. Scanning electron microscopy revealed that the abaxial surface of leaves from resistant plants had a higher density of both long and glandulartrichomes, which might repel aphids, on veins. Time-lapse animation also suggested a repellent effect of resistant plants on aphids. However, electropenatography (EPG) indicated that the time to first probe did not differ between aphids feeding on the resistant and susceptible lines. EPG also indicated that fewer aphids feeding on resistant plants reached the phloem, and the time before reaching the phloem was much longer relative to susceptible soybean. For aphids that reached the phloem, there was no difference in either number of feedings or their duration in phloem. However, aphids feeding on resistant soybean had fewer prolonged phases of active salivation (E1) and many more pathway activities and non-probing intervals. Together, the feeding behavior of aphids suggested that Rag2 resistance has strong antixenosis effects, in addition to previously reported antibiosis, and was associated with epidermal and mesophyll tissues.


Asunto(s)
Antibiosis , Áfidos/fisiología , Glycine max/fisiología , Animales , Áfidos/crecimiento & desarrollo , Conducta Alimentaria , Microscopía Electrónica de Rastreo , Hojas de la Planta/ultraestructura , Glycine max/genética , Grabación en Video
19.
J Proteome Res ; 14(10): 4137-46, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26350764

RESUMEN

Soybean aphid is an important pest causing significant yield losses. The Rag2 locus confers resistance to soybean aphid biotypes 1 and 2. Transcriptomic and proteomic analyses were done over a 48 h period after aphid infestation using near isogenic lines (NILs) differing at the Rag2 locus. Comparing the Rag2 and/or rag2 lines identified 3445 proteins, of which 396 were differentially regulated between the two lines, including proteins involved in cell wall metabolism, carbohydrate metabolism, and stress response. RNA-seq transcriptomic analysis identified 2361 genes significantly regulated between the resistant and susceptible lines. Genes upregulated in the Rag2 line were annotated as being involved in cell wall, secondary, and hormone metabolism as well as in stress, signaling, and transcriptional responses. Genes downregulated in the Rag2 line were annotated as being involved in photosynthesis and carbon metabolism. Interestingly, two genes (unknown and mitochondrial protease) located within the defined Rag2 locus were expressed significantly higher in the resistant genotype. The expression of a putative NBS-LRR resistant gene within the Rag2 locus was not different between the two soybean lines, but a second NBL-LRR gene located just at the border of the defined Rag2 locus was. Therefore, this gene may be a candidate R gene controlling aphid resistance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/inmunología , Sitios Genéticos , Genoma de Planta , Glycine max/genética , Proteoma/aislamiento & purificación , Animales , Áfidos/fisiología , Cromatografía Liquida , Ontología de Genes , Genotipo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Anotación de Secuencia Molecular , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Proteoma/genética , Proteoma/inmunología , Glycine max/inmunología , Glycine max/parasitología , Espectrometría de Masas en Tándem
20.
Theor Appl Genet ; 128(5): 827-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25690715

RESUMEN

KEY MESSAGE: A major novel QTL was identified in a recombinant inbred line population derived from a cross of 'Wyandot' × PI 567301B for Fusarium graminearum, a seed and seedling pathogen of soybean. Fusarium graminearum is now recognized as a primary pathogen of soybean, causing root, seed rot and seedling damping-off in North America. In a preliminary screen, 'Wyandot' and PI 567301B were identified with medium and high levels of partial resistance to F. graminearum, respectively. The objective of this study was to characterise resistance towards F. graminearum using 184 recombinant inbred lines (RILs) derived from a cross of 'Wyandot' × PI 567301B. The parents and the RILs of the mapping population were evaluated for resistance towards F. graminearum using the rolled towel assay in a randomized incomplete block design. A genetic map was constructed from 2545 SNP markers and 2 SSR markers by composite interval mapping. One major and one minor QTL were identified on chromosomes 8 and 6, respectively, which explained 38.5 and 8.1 % of the phenotypic variance. The major QTL on chromosome 8 was mapped to a 300 kb size genomic region of the Williams 82 sequence. Annotation of this region indicates that there are 39 genes including the Rhg4 locus for soybean cyst nematode (SCN) resistance. Based on previous screens, PI 567301B is susceptible to SCN. Fine mapping of this locus will assist in cloning these candidate genes as well as identifying DNA markers flanking the QTL that can be used in marker-assisted breeding to develop cultivars with high levels of resistance to F. graminearum.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Glycine max/genética , Sitios de Carácter Cuantitativo , Cromosomas de las Plantas , Fusarium , Ligamiento Genético , Marcadores Genéticos , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Glycine max/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA