Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38722961

RESUMEN

Aerogel fibers are good thermal insulators, suitable for weaving, and show potential as the next generation of intelligent textiles that can effectively reduce heat consumption for personal thermal management. However, the production of continuous aerogel fibers from biomass with sufficient strength and radial elasticity remains a significant challenge. Herein, continuous gel fibers were produced via wet spinning using agarose (AG) as the matrix, 2,2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNs) as the reinforcing agent, and no other chemical additives by utilizing the gelling properties of AG. Supercritical drying and chemical vapor deposition (CVD) were then used to produce hydrophobic AG-TOCN aerogel fibers (HATAFs). During CVD, the HATAF gel skeleton was covered with an isostructural silica coating. Consequently, the HATAFs can recover from radial compression under 60% strain. Moreover, the HATAFs have low densities (≤0.14 g cm-3), high porosities (≥91.8%), high specific surface areas (≥188 m2 g-1), moderate tensile strengths (≤1.75 MPa), excellent hydrophobicity (water contact angles of >130°), and good thermal insulating properties at different temperatures. Thus, HATAFs are expected to become a new generation of materials for efficient personal thermal management.

2.
Gels ; 10(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667686

RESUMEN

Aerogel fibers, characterized by their ultra-low density and ultra-low thermal conductivity, are an ideal candidate for personal thermal management as they hold the potential to effectively reduce the energy consumption of room heating and significantly contribute to energy conservation. However, most aerogel fibers have weak mechanical properties or require complex manufacturing processes. In this study, simple continuous silk fibroin-agarose composite aerogel fibers (SCAFs) were prepared by mixing agarose with silk fibroin through wet spinning and rapid gelation, followed by solvent replacement and supercritical carbon dioxide treatment. Among them, the rapid gelation of the SCAFs was achieved using agarose physical methods with heat-reversible gel properties, simplifying the preparation process. Hydrophobic silk fibroin-agarose composite aerogel fibers (HSCAFs) were prepared using a simple chemical vapor deposition (CVD) method. After CVD, the HSCAFs' gel skeletons were uniformly coated with a silica layer containing methyl groups, endowing them with outstanding radial elasticity. Moreover, the HSCAFs exhibited low density (≤0.153 g/cm3), a large specific surface area (≥254.0 m2/g), high porosity (91.1-94.7%), and excellent hydrophobicity (a water contact angle of 136.8°). More importantly, they showed excellent thermal insulation performance in low-temperature (-60 °C) or high-temperature (140 °C) environments. The designed HSCAFs may provide a new approach for the preparation of high-performance aerogel fibers for personal thermal management.

3.
Heart Rhythm ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490601

RESUMEN

BACKGROUND: Left bundle branch block (LBBB) represents a frequently encountered conduction system disorder. Despite its widespread occurrence, a continual dilemma persists regarding its intricate association with underlying cardiomyopathy and its pivotal role in the initiation of dilated cardiomyopathy. The pathologic alterations linked to LBBB-induced cardiomyopathy (LBBB-CM) have remained elusive. OBJECTIVE: This study sought to investigate the chronologic dynamics of LBBB to left ventricular dysfunction and the pathologic mechanism of LBBB-CM. METHODS: LBBB model was established through main left bundle branch trunk ablation in 14 canines. All LBBB dogs underwent transesophageal echocardiography and electrocardiography before ablation and at 1 month, 3 months, 6 months, and 12 months after LBBB induction. Single-photon emission computed tomography imaging was performed at 12 months. We then harvested the heart from all LBBB dogs and 14 healthy adult dogs as normal controls for anatomic observation, Purkinje fiber staining, histologic staining, and connexin43 protein expression quantitation. RESULTS: LBBB induction caused significant fibrotic changes in the endocardium and mid-myocardium. Purkinje fibers exhibited fatty degeneration, vacuolization, and fibrosis along with downregulated connexin43 protein expression. During a 12-month follow-up, left ventricular dysfunction progressively worsened, peaking at the end of the observation period. The association between myocardial dysfunction, hypoperfusion, and fibrosis was observed in the LBBB-afflicted canines. CONCLUSION: LBBB may lead to profound myocardial injury beyond its conduction impairment effects. The temporal progression of left ventricular dysfunction and the pathologic alterations observed shed light on the complex relationship between LBBB and cardiomyopathy. These findings offer insights into potential mechanisms and clinical implications of LBBB-CM.

4.
Biomater Adv ; 159: 213814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38417206

RESUMEN

Controllable preparation of materials with new structure has always been the top priority of polymer materials science research. Here, the supramolecular binding strategy is adopted to develop covalent organic frameworks (COFs) with novel structures and functions. Based on this, a two-dimensional crown-ether ring threaded covalent organic framework (COF), denoted as Crown-COPF with intrinsic photothermal (PTT) and photodynamic (PDT) therapeutic capacity, was facilely developed using crown-ether threaded rotaxane and porphyrin as building blocks. Crown-COPF with discrete mechanically interlocked blocks in the open pore could be used as a molecular machine, in which crown-ether served as the wheel sliding along the axle under the laser stimulation. As a result, Crown-COPF combining with the bactericidal power of crown ether displayed a significant photothermal and photodynamic antibacterial activity towards both the Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus), far exceeding the traditional Crown-free COF. Noteworthily, the bactericidal performance could be further enhanced via impregnation of Zn2+ ions (Crown-COPF-Zn) flexible coordinated with the multiple coordination sites (crown-ether, bipyridine, and porphyrin), which not only endow the positive charge with the skeleton, enhancing its ability to bind to the bacterial membrane, but also introduce the bactericidal ability of zinc ions. Notably, in vivo experiments on mice with back infections indicates Crown-COPF-Zn with self-adaptive multinuclear zinc center, could effectively promote the repairing of wounds. This study paves a new avenue for the effectively preparation of porous polymers with brand new structure, which provides opportunities for COF and mechanically interlocked polymers (MIPs) research and applications.


Asunto(s)
Éteres Corona , Ciclodextrinas , Estructuras Metalorgánicas , Poloxámero , Porfirinas , Rotaxanos , Animales , Ratones , Estructuras Metalorgánicas/farmacología , Rotaxanos/farmacología , Éteres Corona/farmacología , Polímeros/farmacología , Antibacterianos/farmacología , Escherichia coli , Iones , Zinc/farmacología , Cicatrización de Heridas
5.
Chemistry ; 30(15): e202304134, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205620

RESUMEN

A 14-electron ternary anionic CBe2 H5 - cluster containing a planar tetracoordinate carbon (ptC) atom is designed herein. Remarkably, it can be stabilized by only two beryllium atoms with both π-acceptor/σ-donor properties and two hydrogen atoms, which means that the conversion from planar methane (transition state) to ptC species (global minimum) requires the substitution of only two hydrogen atoms. Moreover, two ligand H atoms exhibit alternate rotation, giving rise to interesting dynamic fluxionality in this cluster. The electronic structure analysis reveals the flexible bonding positions of ligand H atoms due to C-H localized bonds, highlighting the rotational fluxionality in the cluster, and two CBe2 3c-2e delocalized bonds endow its rare 2σ/2π double aromaticity. Unprecedentedly, the fluxional process exhibits a conversion in the type of bonding (σ bond↔π bond), which is an uncommon fluxional mechanism. The cluster can be seen as an attempt to apply planar hypercoordinate carbon species to molecular motors.

6.
Molecules ; 28(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138468

RESUMEN

A large quantity of coal fly ash is generated worldwide from thermal power plants, causing a serious environmental threat owing to disposal and storage problems. In this work, for the first time, coal fly ash is converted into advanced and novel aerogel fibers and high-purity α-Al2O3. Silica-bacterial cellulose composite aerogel fibers (CAFs) were synthesized using an in situ sol-gel process under ambient pressure drying. Due to the unique "nanoscale interpenetrating network" (IPN) structure, the CAFs showed wonderful mechanical properties with an optimum tensile strength of 5.0 MPa at an ultimate elongation of 5.8%. Furthermore, CAFs with a high porosity (91.8%) and high specific surface area (588.75 m2/g) can inherit advanced features, including excellent thermal insulation, stability over a wide temperature range, and hydrophobicity (contact angle of approximately 144°). Additionally, Al2O3 was simultaneously extracted from the coal fly ash to ensure that the coal fly ash was fully exploited. Overall, low-cost woven CAFs fabrics are suitable for wearable applications and offer a great approach to comprehensively use coal fly ash to address environmental threats.

7.
Langmuir ; 39(36): 12550-12562, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624993

RESUMEN

For protecting the exquisite structural patterns of such coins, developments of simple preparation methods were explored to achieve good hydrophobic capability and the wear-damage resistance of CuZnPb surfaces. A self-cleaning nanoliquid (SN) was combined with microstructured Ag-dispersed CuZnPb (MAC) to realize good hydrophobicity functions of the SNMAC. This was because the cooperative functions of silver and the SN enhanced the water reunion ability and increased solid-liquid-gas contact areas, leading to high contact angles of SNMAC. Their cooperations produced discrepant forces in their respective areas of the water drops and increased heterogeneous flowing, resulting in a high-angle hysteresis of SNMAC. Subsequently, the wear-damage resistance of the hydrophobic interface was measured in a ball-on-flat tribopair system, and the results showed that sliding injuries made a height distribution of the hydrophobic surface trend toward an equalization, allowing the cooperation of nano-silver, SN, and CuZnPb to form a new-style interface for achieving excellent hydrophobicity, thus producing the highest contact angles of the SNMAC among the as-prepared samples.

8.
Chem Biol Drug Des ; 102(5): 1213-1230, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37550016

RESUMEN

The purpose of this study was to prepare phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide (PPS) and investigate its protective effect on vascular endothelial cells (VECs) in vitro and in vivo and the underlying mechanisms. Sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) were used as phosphorylation reagents and PPS was characterized by Fourier transform infrared (FT-IR), 13 C nuclear magnetic resonance (13 C NMR) and 31 P nuclear magnetic resonance (31 P NMR) spectra. Chemical analysis demonstrated that PPS was composed of mannose, glucosamine, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose with a molar ratio of 11.36:0.42:4.03:1.12:1.81:0.26:33.25:24.12:6.85:14.46:2.32 and a molecular weight of 28,837 Da. Results from in vitro and in vivo assays revealed that PPS protected human umbilical vein endothelial cells (HUVECs) against H2 O2 -induced oxidative injury and attenuated D-galactose-induced VECs damage in mice. RNA sequencing (RNA-seq) analysis identified 18 differentially expressed genes (DEGs) between D-galactose-treated and PPS-pretreated mice abdominal aorta. A deep analysis of these DEGs disclosed that PPS regulated the expression of genes involved in the functions of vascular endothelium repairment, cell growth and proliferation, cell survival and apoptosis, inflammation, angiogenesis and antioxidant, indicating that these biological processes might play crucial roles in the protective actions of PPS on VECs.

9.
Polymers (Basel) ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987327

RESUMEN

In this work, the mechanical behavior and energy absorption characteristics of flexible fabric under hypervelocity impact (HVI) were investigated. Basalt fabric, ultra-high molecular weight polyethylene (UHMWPE) fabric, and aluminum alloy (Al) plate were chosen to be the sample materials for their excellent mechanical properties and applicative prospect in spacecraft shielding. HVI experiments had been conducted with the help of a two-stage light-gas gun facility, wherein Al projectile with 3.97 mm diameter was launched at velocities in the range 4.1~4.3 km/s. Impact conditions and areal density were kept constant for all targets. The microstructural damage morphology of fiber post-impact was characterized using a scanning electron microscope (SEM). Analysis results show that a brittle fracture occurred for Basalt fiber during HVI. On the contrary, the ductile fractures with large-scale plastic deformation and apparent thermal softening/melting of the material had happened on the UHMWPE fiber when subjected to a projectile impact. According to the HVI shielding performance and microstructural damage analysis results, it can be inferred that ductile fractures and thermal softening/melting of the material were the prevailing energy absorption behaviors of UHMWPE fabric, which leads to absorbing more impact energy than Basalt fabric and eventually, contributes the superior shielding performance.

10.
RSC Adv ; 13(5): 3071-3078, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756424

RESUMEN

The transition-metal centered boron molecular wheels have attracted the attention of chemists. The highest deca-coordination number for central metal atoms was observed in D 10h Ta©B10 - and Nb©B10 - molecular wheels. Here, we report a theoretical study of La©B8C4 q (q = +1, 0, -1) clusters with the dodeca-coordinated La atom. The La©B8C4 q clusters adopt fascinating molecular wheel structures, showing a La atom enclosed by a perfect B8C4 monocyclic ring. The cationic La©B8C4 + cluster has a C 4v symmetry with the distinctly out-of-plane distortion of the La atom (0.70 Å), which is gradually flattened by the sequential reduction reaction. The distortion of the La atom from the plane in the neutral La©B8C4 cluster decreases to 0.46 Å. The La©B8C4 - species turns out to be perfectly planar. Chemical bonding analyses indicate that the neutral La©B8C4 and anionic La©B8C4 - possess 10σ and 9π/10π double aromaticity, respectively, obeying the principle of double aromaticity. However, the cationic La©B8C4 + has 10σ and 8π conflicting aromaticity, representing a counterexample in planar hyper-coordinated molecular wheels. The dodeca-coordination number in La©B8C4 q (q = +1, 0, -1) clusters is unprecedented, which provides a new idea and concept for searching planar hyper-coordinated systems.

11.
Food Chem ; 409: 135328, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36599289

RESUMEN

The identification of residual thiram (Tr) in foods is vital in view of its harmful effects on human health. Herein, a ratiometric fluorescence sensor (I435/I590) based on rhodamine B/NH2-MIL-53(Al0.75Fe0.25) was constructed for the detection of Tr. Interestingly, the probe RhB/NH2-MIL-53(Bim) assisted by Cu2+ could rapidly and sensitively recognize Tr with a low detection limit of 0.11 µg/mL in 10 min. The fluorescence sensing mechanism was investigated using fluorescence spectra, UV-Vis absorption spectra, the fluorescence lifetime and quantum yield. The results showed that the excellent sensing performance was attributed to fluorescence resonance energy transfer, electrostatic interaction, and photoinduced electron transfer. In addition, the practical application of this platform showed acceptable relative recoveries for Tr (84.03-107.81 %), and precisions were also achieved (relative standard deviation ≤ 8.69 %, n = 3). These results show that the presented herein can be applied to monitor the Tr content in real fruit samples.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Tiram , Frutas , Límite de Detección , Transferencia Resonante de Energía de Fluorescencia
12.
Phys Chem Chem Phys ; 24(46): 28548-28553, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36411992

RESUMEN

Computational evidence is reported for the largest planar molecular wheel of the Y©B8C4 cluster, featuring an yttrium atom enclosed by a highly symmetric B8C4 ring. The B8C4 ring is viable in the -(BCB)4- form with double 9π/10σ aromaticity. The centered yttrium atom is dodeca-coordinated with the peripheral B8C4 ring, which sets a record coordination number for a planar structure in chemistry heretofore.

13.
Langmuir ; 38(45): 13898-13909, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36322411

RESUMEN

Plant polyphenol-inspired surface modification of membranes is helpful for oil-water separation. However, the preparation of this coating is time-consuming. Herein, we introduce a rapid synthesis of the TA-APTES coating by the addition of sodium periodate (SP). The surface chemical composition and morphology of the resultant TA-APTES hybrid coatings were characterized using SEM, ATR-FTIR, and XPS. The hydrophilicity and membrane performance were investigated by the water contact angle, pure water permeability, and oil rejection for an isooctane-in-water emulsion. The experimental findings revealed that the optimal microfiltration (MF) membrane (MF-TA-APTES-SP-0.05) displayed exceptional hydrophilicity and water permeability (9558 L m-2 h-1 bar-1). The membrane realized highly efficient separation with a permeability (4117 L m-2 h-1 bar-1) and rejection of oils (>99%). Furthermore, it possessed outstanding chemical stability and maintained underwater superoleophobicity even after exposure to harsh conditions. This simple and rapid strategy of developing hydrophilic coatings as a modifier for the poly(vinylidene fluoride) membranes has potential applications in oil-water separation and wastewater treatment.


Asunto(s)
Membranas Artificiales , Taninos , Emulsiones , Aceites/química , Agua/química
14.
Gels ; 8(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35621601

RESUMEN

Aerogels are three-dimensional nanoporous materials with outstanding properties, especially great thermal insulation. Nevertheless, their extremely high brittleness restricts their practical application. Recently, although the mechanical properties of silica aerogels have been improved by regulating the precursor or introducing a polymer reinforcer, these preparation processes are usually tedious and time-consuming. The purpose of this study was to simplify the preparation process of these composite aerogels. A silicic acid solution treated with cation exchange resin was mixed with agarose (AG) to gel in situ, and then composite aerogels (CAs) with an interpenetrating network (IPN) structure were obtained by aging and supercritical CO2 fluid (SCF) drying. Compared to previous works, the presented CAs preparation process is briefer and more environmentally friendly. Moreover, the CAs exhibit a high specific surface area (420.5 m2/g), low thermal conductivity (28.9 mW m-1 K-1), excellent thermal insulation properties, and thermal stability. These results show that these CAs can be better used in thermal insulation.

15.
Toxicol Mech Methods ; 32(9): 678-685, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35392760

RESUMEN

OBJECTIVE: In this study, differentially expressed genes (DEGs) and signaling pathways involved in diquat (DQ) and paraquat (PQ) poisoning were identified via bioinformatics analysis, in order to inform the development of novel clinical treatments. METHODS: Raw data from GSE153959 were downloaded from the Gene Expression Omnibus database. DEGs of the DQ vs. control (CON) and PQ vs. CON comparison groups were identified using R, and DEGs shared by the two groups were identified using TBtools. Subsequently, the shared DEGs were searched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, using the Database for Annotation, Visualization, and Integrated Discovery. A protein-protein interaction (PPI) network was constructed, and hub genes were identified using the cytoHubba plug-in in Cytoscape software. Finally, circos and contrast plots showing the DEGs shared between mouse and human chromosomes were constructed using TBtools. RESULTS: Thirty-one DEGs shared by the DQ and PQ groups were identified. Enriched biological process terms included positive regulation of cell proliferation and translation. Enriched cellular component terms included extracellular region, intracellular membrane-bounded organelle and mitochondrion. Enriched molecular function terms included transcription factor activity and sequence-specific double-stranded DNA binding. Enriched KEGG pathways included the interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, and human T-cell leukemia virus 1 infection. The top 10 hub genes in the PPI network were prostaglandin-endoperoxide synthase 2 (Ptgs2), chemokine (C-X-C motif) ligand 2 (Cxcl2), colony-stimulating factor 2 (granulocyte-macrophage) (Csf2), matrix metallopeptidase 13 (Mmp13), amphiregulin (Areg), plasminogen activator, urokinase receptor (Plaur), fos-like antigen 1 (Fosl1), epiregulin (Ereg), activating transcription factor 3 (Atf3), and transferrin receptor (Tfrc). Cxcl2, Csf2, and Atf3 played important roles in the mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSIONS: These pathways and DEGs may serve as targets for gene therapy.


Asunto(s)
Biología Computacional , Diquat , Paraquat , Factor de Transcripción Activador 3 , Anfirregulina , Animales , Quimiocina CXCL2 , Factores Estimulantes de Colonias , Ciclooxigenasa 2 , Diquat/envenenamiento , Epirregulina , Perfilación de la Expresión Génica , Humanos , Interleucina-17 , Metaloproteinasa 13 de la Matriz , Ratones , Proteínas Quinasas Activadas por Mitógenos , Paraquat/envenenamiento , Receptores de Transferrina , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Factores de Necrosis Tumoral
16.
RSC Adv ; 12(14): 8617-8623, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35424824

RESUMEN

Theoretical evidence is reported for a boron-based K6Be2B6H6 sandwich cluster, showing a perfectly D 6h B6H6 ring, being capped by two tetrahedral K3Be ligands. Due to the comfortable charge transfer, the sandwich is viable in [K3Be]3+[B6H6]6-[BeK3]3+ ionic complex in nature. The [B6H6]6- core with 6π aromaticity vividly imitates the benzene (C6H6), occurring as a real borozene. In contrast, the tetrahedral [K3Be]3+ ligand is 2σ three-dimensional aromatic, acting as the simple superatom. Thus, this complex possesses a collectively three-fold 2σ/6π/2σ aromaticity. The interlaminar interaction is governed by the robust electrostatic attraction. The unique chemical bonding gives rise to interesting dynamic fluxionality.

17.
Int J Biol Macromol ; 205: 76-89, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35181328

RESUMEN

Polysaccharides coded as CP were extracted from Athyrium Multidentatum (Doll.) Ching and then fractionated into five fractions (FP-1, FP-2, FP-3, FP-4 and FP-5). A purified polysaccharide designated as FP-3-4 was prepared from FP-3 by Sephadex G-100 column chromatography. Chemical analysis disclosed that CP and these fractions were heteropolysaccharides and mainly composed of glucose, galactose, arabinose, mannose, rhamnose, xylose, fucose, ribose and uronic acid with different molar ratios. They presented different images of SEM. FP-3-4 was highly branched polymers with sixteen types of linkages. The in vitro immunomodulatory results stated that CP and these fractions could promote macrophage proliferation, enhance macrophage phagocytosis and increase the production of NO, TNF-α, IFN-γ, IL-1ß, IL-6, IL-10 and IL-2, indicating remarkable immune enhancement activities. RNA sequencing analysis revealed that CP and FP-3 induced macrophage activation mainly through MAPK and alternative NF-κΒ signaling pathways via CD14/TLR4 and Dectin-2 receptors, which were verified by RT-qPCR and western blot.


Asunto(s)
Fucosa , Polisacáridos , Animales , Arabinosa , Galactosa/análisis , Manosa/análisis , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Células RAW 264.7
18.
Artículo en Inglés | MEDLINE | ID: mdl-35137282

RESUMEN

The study aimed to investigate left ventricular (LV) motion pattern in patients with LBBB patterns including patients with pacemaker rhythm (PM), type B Wolff-Parkinson-White syndrome (B-WPW), premature ventricular complexes originating from the right ventricular outflow tract (RVOT-PVC), and complete left bundle branch block (CLBBB). Two-dimensional speckle tracking was used to evaluate peak value and time to peak value of the LV twist, LV apex rotation, and LV base rotation in patients with PM, B-WPW, RVOT-PVC, and CLBBB with normal LV ejection fraction, and in age-matched control subjects. The LV motion patterns were altered in all patients compared to the control groups. Patients with PM and CLBBB had a similar LV motion pattern with a reduced peak value of LV apex rotation and LV twist. Patients with B-WPW demonstrated the opposite trend in the reduction of LV rotation peak value, which was more dominant in the basal layer. The most impairment in the LV twist/rotation peak value was identified in patients with RVOT-PVC. Compared to the control group, the apical-basal rotation delay was prolonged in patients with CLBBB, followed by those with B-WPW, PM, and RVOT-PVC. The LV motion patterns were different among patients with different patterns of LBBB. CLBBB and PM demonstrated a reduction in LV twist/rotation that was pronounced in the apical layer, B-WPW showed a reduction in the basal layer, and RVOT-PVC in both layers. CLBBB had the most pronounced LV apical-basal rotation dyssynchrony.

19.
ACS Appl Mater Interfaces ; 14(1): 1157-1168, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962368

RESUMEN

Lithium-sulfur (Li-S) batteries are considered a prospective energy storage system because of their high theoretical specific capacity and high energy density, whereas Li-S batteries still face many serious challenges on the road to commercialization, including the shuttle effect of lithium polysulfides (LiPSs), their insulating nature, the volume change of the active materials during the charge-discharge process, and the tardy sulfur redox kinetics. In this work, double transition metal oxide TiNb2O7 (TNO) nanometer particles are tactfully deposited on the surface of an activated carbon cloth (ACC), activating the surface through a hydrothermal reaction and high-temperature calcination and finally forming the flexible self-supporting architecture as an effective catalyst for sulfur conversion reaction. It has been found that ACC@TNO possesses many catalytic activity sites, which can inhibit the shuttle effect of LiPSs and increase the Coulombic efficiency by boosting the redox reaction kinetics of LiPS transformation reaction. As a consequence, the ACC@TNO/S cathode exhibits an impressive electrochemical performance, including a high initial discharge capacity of 885 mAh g-1 at a high rate of 1 C, a high discharge specific capacity of 825 mAh g-1 after 200 cycles with a prominent capacity retention rate of 93%, and a small decay rate of 0.034% per cycle. Although TNO is extensively used in the fields of lithium ion batteries and other rechargeable batteries, it is first introduced as sulfur host materials to boost the redox reaction kinetics of the LiPS transformation reaction and increase the electrochemical performance of Li-S batteries. Therefore, studies of the synergistic effect on the chemical absorption and catalytic conversion effect of TNO for LiPSs of Li-S batteries provide a good strategy for boosting further the comprehensive electrochemical performances of Li-S batteries.

20.
Gels ; 7(3)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34563031

RESUMEN

Aerogels are nanoporous materials with excellent properties, especially super thermal insulation. However, owing to their serious high brittleness, the macroscopic forms of aerogels are not sufficiently rich for the application in some fields, such as thermal insulation clothing fabric. Recently, freeze spinning and wet spinning have been attempted for the synthesis of aerogel fibers. In this study, robust fibrous silica-bacterial cellulose (BC) composite aerogels with high performance were synthesized in a novel way. Silica sol was diffused into a fiber-like matrix, which was obtained by cutting the BC hydrogel and followed by secondary shaping to form a composite wet gel fiber with a nanoscale interpenetrating network structure. The tensile strength of the resulting aerogel fibers reached up to 5.4 MPa because the quantity of BC nanofibers in the unit volume of the matrix was improved significantly by the secondary shaping process. In addition, the composite aerogel fibers had a high specific area (up to 606.9 m2/g), low density (less than 0.164 g/cm3), and outstanding hydrophobicity. Most notably, they exhibited excellent thermal insulation performance in high-temperature (210 °C) or low-temperature (-72 °C) environments. Moreover, the thermal stability of CAFs (decomposition temperature was about 330 °C) was higher than that of natural polymer fiber. A novel method was proposed herein to prepare aerogel fibers with excellent performance to meet the requirements of wearable applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...