Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Innovation (Camb) ; 4(5): 100459, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37560333

RESUMEN

The search of quantum spin liquid (QSL), an exotic magnetic state with strongly fluctuating and highly entangled spins down to zero temperature, is a main theme in current condensed matter physics. However, there is no smoking gun evidence for deconfined spinons in any QSL candidate so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices. Here we report comprehensive and systematic measurements of the magnetic susceptibility, ultralow-temperature specific heat, muon spin relaxation (µSR), nuclear magnetic resonance (NMR), and thermal conductivity for NaYbSe2 single crystals, in which Yb3+ ions with effective spin-1/2 form a perfect triangular lattice. All these complementary techniques find no evidence of long-range magnetic order down to their respective base temperatures. Instead, specific heat, µSR, and NMR measurements suggest the coexistence of quasi-static and dynamic spins in NaYbSe2. The scattering from these quasi-static spins may cause the absence of magnetic thermal conductivity. Thus, we propose a scenario of fluctuating ferrimagnetic droplets immersed in a sea of QSL. This may be quite common on the way pursuing an ideal QSL, and provides a brand new platform to study how a QSL state survives impurities and coexists with other magnetically ordered states.

2.
Natl Sci Rev ; 10(6): nwac251, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37181095

RESUMEN

Starting from Landau's kinetic equation, we show that an electronic liquid in d = 2, 3 spatial dimensions depicted by a Landau-type effective theory will become incompressible on condition that the Landau parameters satisfy either (i) [Formula: see text] or (ii) [Formula: see text]. Condition (i) is the Pomeranchuk instability in the current channel and suggests a quantum spin liquid (QSL) state with a spinon Fermi surface; while condition (ii) means that the strong repulsion in the charge channel leads to a conventional charge and thermal insulator. In the collisionless regime (ωτ ≫ 1) and the hydrodynamic regime (ωτ ≪ 1), the zero and first sound modes have been studied and classified by symmetries, including the longitudinal and transverse modes in d = 2, 3 and the higher angular momentum modes in d = 3. The sufficient (and/or necessary) conditions of these collective modes have been revealed. It has been demonstrated that some of these collective modes will behave in quite different manners under incompressibility condition (i) or (ii). Possible nematic QSL states and a hierarchy structure for gapless QSL states have been proposed in d = 3.

3.
Sci Rep ; 8(1): 488, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323128

RESUMEN

We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.

4.
Phys Rev Lett ; 118(26): 267701, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28707919

RESUMEN

The Kitaev chain model with a nearest neighbor interaction U is solved exactly at the symmetry point Δ=t and chemical potential µ=0 in an open boundary condition. By applying two Jordan-Wigner transformations and a spin rotation, such a symmetric interacting model is mapped onto a noninteracting fermion model, which can be diagonalized exactly. The solutions include a topologically nontrivial phase at |U|t. The two phases are related by dualities. Quantum phase transitions in the model are studied with the help of the exact solution.

5.
J Phys Condens Matter ; 23(46): 464203, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22167901

RESUMEN

There is an anomalous broad hump in the normal state resistivity in hole-type 1111 phase FeAs-based superconductors and its origin is an open issue. We study the effect of Zn doping on this anomaly in order to determine whether it is associated with the residual structural/antiferromagnetic (AFM) phase transition as in the parent compounds. A series of Zn doped Pr0.8Sr0.2FeAsO samples are prepared and their resistivity, magnetoresistance, Hall effect and specific heat are measured. Zn doping should not introduce extra charge carriers, and instead it can suppress the structural/AFM transition efficiently in the parent LaFeAsO system. The hump in resistivity remains unchanged with 6% Zn doping in Pr0.8Sr0.2FeAsO. The measurements of magnetoresistance reveal that the magnetoresistance is negligible in the Zn doped Pr0.8Sr0.2FeAsO samples, in contrast to the large positive magnetoresistance below the temperature of structure/AFM phase transition in the parent compound PrFeAsO. The results indicate that the anomalous broad hump in resistivity does not originate from the structural/AFM transition. The Hall effect and specific heat data are also consistent with this conclusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA