Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421092

RESUMEN

This paper presents a Ka band eight-channel integrated packaged phased array receiver front-end for a passive millimeter-wave imaging system. Since multiple receiving channels are integrated in a given package, the mutual coupling issue affecting the channel will deteriorate imaging quality. Therefore, in this study, the influence of channel mutual coupling on the system array pattern and amplitude phase error is analyzed, and the design requirements are proposed according to the results. During the design implementation, the coupling paths are discussed, and passive circuits in the path are modeled and designed to reduce the level of channel mutual coupling and spatial radiation. Finally, an accurate coupling measurement method for a multi-channel integrated phased array receiver is proposed. The receiver front-end achieves a 28~31 dB single channel gain, a 3.6 dB noise figure, less than -47 dB of channel mutual coupling. Furthermore, the array pattern of the two-dimensional 1024 channel system composed of the front end of the receiver is consistent with the simulation, and the receiver's performance is verified by a human-body-imaging experiment. The proposed coupling analysis, design, and measurement methods are also applicable to other multi-channel integrated packaged devices.

2.
Micromachines (Basel) ; 14(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37421100

RESUMEN

Human body temperature is a fundamental physiological sign that reflects the state of physical health. It is important to achieve high-accuracy detection for non-contact human body temperature measurement. In this article, a Ka band (32 to 36 GHz) analog complex correlator using the integrated six-port chip is proposed, and a millimeter-wave thermometer system based on the designed correlator is completed for human body temperature measurement. The designed correlator utilizes the six-port technique to achieve large bandwidth and high sensitivity, and miniaturization of the correlator is achieved through an integrated six-port chip. By performing the single-frequency test and the broadband noise measurement on the correlator, we can determine that the dynamic range of input power of the correlator is -70 dBm to -35 dBm, and the correlation efficiency and equivalent bandwidth are 92.5% and 3.42 GHz, respectively. Moreover, the output of the correlator varies linearly with the input noise power, which reveals that the designed correlator is suitable for the field of human body temperature measurement. Then, a handheld thermometer system, with a size of 140 mm × 47 mm × 20 mm, is proposed using the designed correlator, and the measurement results show that the temperature sensitivity of the thermometer is less than 0.2 K.

3.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957252

RESUMEN

This paper presents the coupling effects analysis and suppression of a highly integrated receiver front-end MMIC for a passive millimeter-wave imager system. The receiver MMIC consists of a low-noise amplifier, double-balanced image-reject mixer, frequency quadrupler, and analog phase shifter. In order to integrate these devices into a compact single chip without affecting the core performance, coupling problems need to be solved. We analyze the influence of coupling effects on the image rejection ratio, and propose corresponding solutions for three different coupling paths. (1) The coupling in the LO-RF path of the mixer is solved by designing a double-balanced mixer with high isolation characteristics. (2) The coupling between the LO chain and the LNA from space and dielectric is suppressed by optimizing the two main transmission lines spacing and adding isolation vias. (3) The coupling caused by the line crossing is restrained by designing a differential line crossover structure. The design and implementation of the MMIC are based on 0.15 µm GaAs pHEMT process. The receiver chip has 6.1~8.7 dB conversion gain in 32~36 GHz, less than 3.5 dB of noise figure, and more than 35 dB of image rejection ratio. The measurement results show that the receiver MMIC is especially suitable for high-sensitivity passive millimeter-wave imaging systems.

4.
Adv Mater ; 34(42): e2204373, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35951262

RESUMEN

Recently, ferromagnetic-heterostructure spintronic terahertz (THz) emitters have been recognized as one of the most promising candidates for next-generation THz sources, owing to their peculiarities of high efficiency, high stability, low cost, ultrabroad bandwidth, controllable polarization, and high scalability. Despite the substantial efforts, they rely on external magnetic fields to initiate the spin-to-charge conversion, which hitherto greatly limits their proliferation as practical devices. Here, a unique antiferromagnetic-ferromagnetic (IrMn3 |Co20 Fe60 B20 ) heterostructure is innovated, and it is demonstrated that it can efficiently generate THz radiation without any external magnetic field. It is assigned to the exchange bias or interfacial exchange coupling effect and enhanced anisotropy. By precisely balancing the exchange bias effect and enhanced THz radiation efficiency, an optimized 5.6 nm-thick IrMn3 |Co20 Fe60 B20 |W trilayer heterostructure is successfully realized, yielding an intensity surpassing that of Pt|Co20 Fe60 B20 |W. Moreover, the intensity of THz emission is further boosted by togethering the trilayer sample and bilayer sample. Besides, the THz polarization may be flexibly controlled by rotating the sample azimuthal angle, manifesting sophisticated active THz field manipulation capability. The field-free coherent THz emission that is demonstrated here shines light on the development of spintronic THz optoelectronic devices.

5.
Biomed Opt Express ; 13(5): 2605-2615, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35774311

RESUMEN

Terahertz (THz) spectroscopy provides multifaceted capabilities for observing low-energy responses of macromolecules, cells and tissues, understanding THz biophysical effects, and expecting to realize the application of THz technology in biomedicine. However, its high-frequency characteristics of limited penetration depth and strong absorption of water in the body comparable to microwaves are impeding the proliferation of THz spectroscopy. Here we show that THz spectroscopy makes possible the observation of THz anisotropy phenomena for the first time in fascia and lean tissue. Through optical microscopy, we infer that the microscopic mechanism of THz anisotropy comes from the periodic stripe structure of the biological tissue. The above related experimental findings may be expected to promote the application of THz technology in biomedicine.

6.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35808380

RESUMEN

Six-port technology has been widely used in microwave systems, such as interferometric passive imaging. In this paper, an integrated Ka-band (32-36 GHz) six-port chip based on the 0.15-µm GaAs technology is designed and fabricated to simplify the circuit structure and miniaturize the volume of the imaging system. The designed chip integrates two amplifiers, two phase shifters, and a six-port circuit as part of an analog complex correlator. In this integrated chip, the crosstalk between the two amplifiers cannot be ignored. This paper analyzes the influence of the isolation between two amplifiers on the correlation results to guide the six-port chip design. In addition, considering that the radiometer system receives a broadband noise signal, the phase shifter needs to ensure that the phase shift range of each frequency point is the same under the same control conditions. Therefore, the phase shifter is designed with a high-pass and low-pass structure. The measurement results show that the isolation between the two amplifiers is greater than 20 dB, and the measured phase shift range and phase shift range error of the designed chip are 220° and 10°, respectively, with the control voltage varying from 0 to 1.5 V, which meets the requirements of the system.

7.
Adv Mater ; 34(9): e2106172, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34816497

RESUMEN

Future information technologies for low-dissipation quantum computation, high-speed storage, and on-chip communication applications require the development of atomically thin, ultracompact, and ultrafast spintronic devices in which information is encoded, stored, and processed using electron spin. Exploring low-dimensional magnetic materials, designing novel heterostructures, and generating and controlling ultrafast electron spin in 2D magnetism at room temperature, preferably in the unprecedented terahertz (THz) regime, is in high demand. Using THz emission spectroscopy driven by femtosecond laser pulses, optical THz spin-current bursts at room temperature in the 2D van der Waals ferromagnetic Fe3 GeTe2 (FGT) integrated with Bi2 Te3 as a topological insulator are successfully realized. The symmetry of the THz radiation is effectively controlled by the optical pumping incidence and external magnetic field directions, indicating that the THz generation mechanism is the inverse Edelstein effect contributed spin-to-charge conversion. Thickness-, temperature-, and structure-dependent nontrivial THz transients reveal that topology-enhanced interlayer exchange coupling increases the FGT Curie temperature to room temperature, which provides an effective approach for engineering THz spin-current pulses. These results contribute to the goal of all-optical generation, manipulation, and detection of ultrafast THz spin currents in room-temperature 2D magnetism, accelerating the development of atomically thin high-speed spintronic devices.

8.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960549

RESUMEN

Passive millimeter wave has been employed in security inspection owing to a good penetrability to clothing and harmlessness. However, the passive millimeter wave images (PMMWIs) suffer from low resolution and inherent noise. The published methods have rarely improved the quality of images for PMMWI and performed the detection only based on PMMWI with bounding box, which cause a high rate of false alarm. Moreover, it is difficult to identify the low-reflective non-metallic threats by the differences in grayscale. In this paper, a method of detecting concealed threats in human body is proposed. We introduce the GAN architecture to reconstruct high-quality images from multi-source PMMWIs. Meanwhile, we develop a novel detection pipeline involving semantic segmentation, image registration, and comprehensive analyzer. The segmentation network exploits multi-scale features to merge local and global information together in both PMMWIs and visible images to obtain precise shape and location information in the images, and the registration network is proposed for privacy concerns and the elimination of false alarms. With the grayscale and contour features, the detection for metallic and non-metallic threats can be conducted, respectively. After that, a synthetic strategy is applied to integrate the detection results of each single frame. In the numerical experiments, we evaluate the effectiveness of each module and the performance of the proposed method. Experimental results demonstrate that the proposed method outperforms the existing methods with 92.35% precision and 90.3% recall in our dataset, and also has a fast detection rate.


Asunto(s)
Redes Neurales de la Computación , Humanos
9.
iScience ; 24(11): 103316, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34778731

RESUMEN

Terahertz (THz) technology lays the foundation for next-generation high-speed wireless communication, nondestructive testing, food safety inspecting, and medical applications. When THz technology is integrated by artificial intelligence (AI), it is confidently expected that THz technology could be accelerated from the laboratory research stage to practical industrial applications. Employing THz video imaging, we can gain more insights into the internal morphology of silkworm egg. Deep learning algorithm combined with THz silkworm egg images, rapid recognition of the silkworm egg development stages is successfully demonstrated, with a recognition accuracy of ∼98.5%. Through the fusion of optical imaging and THz imaging, we further improve the AI recognition accuracy of silkworm egg development stages to ∼99.2%. The proposed THz imaging technology not only features the intrinsic THz imaging advantages, but also possesses AI merits of low time consuming and high recognition accuracy, which can be extended to other application scenarios.

10.
Opt Express ; 29(16): 25142-25160, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614852

RESUMEN

Millimeter-wave (MMW) imaging is becoming an important option in many sensing applications. However, the resulting images are often plagued with artifacts caused by complex target scenarios such as concave structures, hampering applications where precise recognition is emphasized. It has been shown that existing imaging techniques can effectively resolve this issue by considering the multi-reflection propagation process in the forward model of the inverse problem. But the accuracy of such method still depends on the precise separation of reflected signals exhibiting different number of interactions with the target surfaces. In this article, an improved imaging technique based on circular polarizations is proposed for accurate imaging of concave objects. By utilizing circular polarized measurements, the received signal can be divided into odd and even number of reflection times. Then, an iterative reconstruction technique is introduced to automatically separate signal components and reconstruct precise contours of the concave surfaces. Furthermore, a strict observation angle boundary model is derived based on methods of the stationary phase to correct the image deformation of edges existing in previous algorithms. Both numerical and experimental results synthesized from 6∼18 GHz dual-polarized measurements are used to demonstrate the improved accuracy and automation of the proposed method.

11.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924439

RESUMEN

A non-contact heartbeat/respiratory rate monitoring system was designed using narrow beam millimeter wave radar. Equipped with a special low sidelobe and small-sized antenna lens at the front end of the receiving and transmitting antennas in the 120 GHz band of frequency-modulated continuous-wave (FMCW) system, this sensor system realizes the narrow beam control of radar, reduces the interference caused by the reflection of other objects in the measurement background, improves the signal-to-clutter ratio (SCR) of the intermediate frequency signal (IF), and reduces the complexity of the subsequent signal processing. In order to solve the problem that the accuracy of heart rate is easy to be interfered with by respiratory harmonics, an adaptive notch filter was applied to filter respiratory harmonics. Meanwhile, the heart rate obtained by fast Fourier transform (FFT) was modified by using the ratio of adjacent elements, which helped to improve the accuracy of heart rate detection. The experimental results show that when the monitoring system is 1 m away from the human body, the probability of respiratory rate detection error within ±2 times for eight volunteers can reach 90.48%, and the detection accuracy of the heart rate can reach 90.54%. Finally, short-term heart rate measurement was realized by means of improved empirical mode decomposition and fast independent component analysis algorithm.


Asunto(s)
Radar , Signos Vitales , Algoritmos , Frecuencia Cardíaca , Humanos , Frecuencia Respiratoria , Procesamiento de Señales Asistido por Computador
12.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027897

RESUMEN

Metamaterials, artificially engineered structures with extraordinary physical properties, offer multifaceted capabilities in interdisciplinary fields. To address the looming threat of stealthy monitoring, the detection and identification of metamaterials is the next research frontier but have not yet been explored. Here, we show that the crypto-oriented convolutional neural network (CNN) makes possible the secure intelligent detection of metamaterials in mixtures. Terahertz signals were encrypted by homomorphic encryption and the ciphertext was submitted to the CNN directly for results, which can only be decrypted by the data owner. The experimentally measured terahertz signals were augmented and further divided into training sets and test sets using 5-fold cross-validation. Experimental results illustrated that the model achieved an accuracy of 100% on the test sets, which highly outperformed humans and the traditional machine learning. The CNN took 9.6 s to inference on 92 encrypted test signals with homomorphic encryption backend. The proposed method with accuracy and security provides private preserving paradigm for artificial intelligence-based material identification.

13.
Sensors (Basel) ; 20(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192222

RESUMEN

The detection of objects concealed under people's clothing is a very challenging task, which has crucial applications for security. When testing the human body for metal contraband, the concealed targets are usually small in size and are required to be detected within a few seconds. Focusing on weapon detection, this paper proposes using a real-time detection method for detecting concealed metallic weapons on the human body applied to passive millimeter wave (PMMW) imagery based on the You Only Look Once (YOLO) algorithm, YOLOv3, and a small sample dataset. The experimental results from YOLOv3-13, YOLOv3-53, and Single Shot MultiBox Detector (SSD) algorithm, SSD-VGG16, are compared ultimately, using the same PMMW dataset. For the perspective of detection accuracy, detection speed, and computation resource, it shows that the YOLOv3-53 model had a detection speed of 36 frames per second (FPS) and a mean average precision (mAP) of 95% on a GPU-1080Ti computer, more effective and feasible for the real-time detection of weapon contraband on human body for PMMW images, even with small sample data.


Asunto(s)
Algoritmos , Crimen/prevención & control , Interpretación de Imagen Asistida por Computador , Metales/análisis , Redes Neurales de la Computación , Medidas de Seguridad , Vestuario , Sistemas de Computación , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Fenómenos Electromagnéticos , Estudios de Factibilidad , Humanos , Interpretación de Imagen Asistida por Computador/instrumentación , Interpretación de Imagen Asistida por Computador/métodos , Límite de Detección , Administración de la Seguridad , Sensibilidad y Especificidad , Armas
14.
Opt Express ; 27(10): 14881-14892, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163929

RESUMEN

A high-contrast target with complex shape, especially concave surfaces, often exhibits strong high-order scattering during forward propagation, which is often misinterpreted as artifacts or phantom targets during imaging. In this work, a bistatic imaging method for reducing artifacts caused by high-order scattering from concave objects under cylindrical millimeter-wave scanning geometry is proposed. The effects of multiple reflections within concave structures are firstly analyzed by using ray-tracing techniques. It is observed that these troublesome multiple reflection echoes are often confined in limited scattering angles. Under this specific requirement for transceiver setup, a bistatic cylindrical aperture synthesis technique is proposed to obtain accurate images of concave object despite strong high-order scattering. To verify this method, simulated imaging results in bistatic near-field cylindrical imaging geometry are presented. Finally, the effectiveness of artifact reduction is confirmed by experimental results of complex metallic targets with concave outlines.

15.
Sensors (Basel) ; 19(7)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30978993

RESUMEN

We present a 64-channel 1-bit/2-level cross-correlation system for a passive millimeter wave imager used for indoor human body security screening. Sixty-four commercial comparators are used to perform 1-bit analog-to-digital conversion, and a Field Programmable Gate Array (FPGA) is used to perform the cross-correlation processing. This system can handle 2016 cross-correlations at the sample frequency of 1GHz, and its power consumption is 48.75 W. The data readout interface makes it possible to read earlier data while simultaneously performing the next correlation when imaging at video rate. The longest integration time is up to 68.7 s, which can satisfy the requirements of video rate imaging and system calibration. The measured crosstalk between neighboring channels is less than 0.068%, and the stability is longer than 10 s. A correlation efficiency greater than 96% is achieved for input signal levels greater than -25 dBm.


Asunto(s)
Conversión Analogo-Digital , Violencia con Armas/prevención & control , Cuerpo Humano , Interferometría/métodos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos , Fantasmas de Imagen , Medidas de Seguridad/tendencias , Procesamiento de Señales Asistido por Computador/instrumentación
16.
Opt Express ; 26(14): 17964-17976, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114078

RESUMEN

We systematically investigate the data analysis methods in terahertz frequency domain spectroscopy (THz-FDS) with coherent detection. We demonstrate that the Hilbert transform method is one of the most appropriate for data processing in THz-FDS. By converting frequency-domain signal into time domain with further data processing, the system noise due to Fabry-Pérot (FP) interference is greatly restrained. Accurate permittivity of lactose monohydrate is successfully extracted under the condition of the existence of atmospheric water vapor. Our work greatly promotes the development of THz spectroscopy in practical applications.

17.
Sensors (Basel) ; 18(4)2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673209

RESUMEN

Digital cross-correlation is central to many applications including but not limited to Digital Image Processing, Satellite Navigation and Remote Sensing. With recent advancements in digital technology, the computational demands of such applications have increased enormously. In this paper we are presenting a high throughput digital cross correlator, capable of processing 1-bit digitized stream, at the rate of up to 2 GHz, simultaneously on 64 channels i.e., approximately 4 Trillion correlation and accumulation operations per second. In order to achieve higher throughput, we have focused on frequency based partitioning of our design and tried to minimize and localize high frequency operations. This correlator is designed for a Passive Millimeter Wave Imager intended for the detection of contraband items concealed on human body. The goals are to increase the system bandwidth, achieve video rate imaging, improve sensitivity and reduce the size. Design methodology is detailed in subsequent sections, elaborating the techniques enabling high throughput. The design is verified for Xilinx Kintex UltraScale device in simulation and the implementation results are given in terms of device utilization and power consumption estimates. Our results show considerable improvements in throughput as compared to our baseline design, while the correlator successfully meets the functional requirements.

18.
Sensors (Basel) ; 18(2)2018 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-29495300

RESUMEN

The design and calibration of the cross-correlator are crucial issues for interferometric imaging systems. In this paper, an analog complex cross-correlator with output DC offsets and amplitudes calibration capability is proposed for interferometric passive millimeter-wave security sensing applications. By employing digital potentiometers in the low frequency amplification circuits of the correlator, the outputs characteristics of the correlator could be digitally controlled. A measurement system and a corresponding calibration scheme were developed in order to eliminate the output DC offsets and the quadrature amplitude error between the in-phase and the quadrature correlating subunits of the complex correlator. By using vector modulators to provide phase controllable correlated noise signals, the measurement system was capable of obtaining the output correlation circle of the correlator. When injected with -18 dBm correlated noise signals, the calibrated quadrature amplitude error was 0.041 dB and the calibrated DC offsets were under 26 mV, which was only 7.1% of the uncalibrated value. Furthermore, we also described a quadrature errors calibration algorithm in order to estimate the quadrature phase error and in order to improve the output phase accuracy of the correlator. After applying this calibration, we were able to reduce the output phase error of the correlator to 0.3°.

19.
Opt Express ; 23(13): 17111-9, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26191719

RESUMEN

Based on optical frequency comb (OFC), a photonic-assisted ultra-broadband microwave signal down-converting method is proposed. In the proposed scheme, microwave signal at 2~20GHz can be down-converted to 0~1GHz intermediate frequency (IF) signals by an OFC of 2GHz frequency space at different order of comb lines. By slightly switching the frequency space of OFC, the frequency of the signal to be measured can be retrieved through the frequency shift of the down-converted IF signal. The validity of this proposed unknown signal detection method is verified by the experiments. The proposed method is proven to be flexible, low-cost and easily implemented, which requires only a low-frequency tunable microwave source while provides ultra-broadband down-converting frequency range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...