Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401635, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607950

RESUMEN

Vapor-driven smart Janus materials have made significant advancements in intelligent monitoring, control, and interaction, etc. Nevertheless, the development of ultrafast response single-layer Janus membrane, along with a deep exploration of the smart response mechanisms, remains a long-term endeavor. Here, the successful synthesis of a high-crystallinity single-layer Covalent organic framework (COF) Janus membrane is reported by morphology control. This kind of membrane displays superior mechanical properties and specific surface area, along with excellent responsiveness to CH2Cl2 vapor. The analysis of the underlying mechanisms reveals that the vapor-induced breathing effect of the COF and the stress mismatch of the Janus structure play a crucial role in its smart deformation performance. It is believed that this COF Janus membrane holds promise for complex tasks in various fields.

2.
ACS Nano ; 18(15): 10485-10494, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564695

RESUMEN

Producing high-quality two-dimensional (2D) covalent organic frameworks (COFs) is crucial for industrial applications. However, this remains significantly challenging with current synthetic techniques. A deep understanding of the intermolecular interactions, reaction temperature, and oligomers is essential to facilitate the growth of highly crystalline COF films. Herein, molecular dynamics simulations were employed to explore the growth of 2D COFs from monomer assemblies on graphene. Our results showed that chain growth reactions dominated the COF surface growth and that van der Waals (vdW) interactions were important in enhancing the crystallinity through monomer preorganization. Moreover, appropriately tuning the reaction temperature improved the COF crystallinity and minimized the effects of amorphous oligomers. Additionally, the strength of the interface between the COF and the graphene substrate indicated that the adhesion force was proportional to the crystallinity of the COF. This work reveals the mechanisms for nucleation and growth of COFs on surfaces and provides theoretical guidance for fabricating high-quality 2D polymer-based crystalline nanomaterials.

3.
Skin Res Technol ; 30(2): e13573, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38303407

RESUMEN

BACKGROUND: Facial acne scars are a prevalent concern, leading to the development of various treatment modalities. OBJECTIVES: This review aims to explore the latest advancements in the treatment of facial acne scars, focusing on both surgical and non-surgical methods. METHODS: The non-surgical treatments reviewed include topical medications (such as retinoids and alpha hydroxy acids) and non-invasive procedures (like microdermabrasion and chemical peels). Surgical options discussed are punch excision, subcision, and fractional laser treatments. RESULTS: Combination therapy, integrating both surgical and non-surgical approaches, is frequently utilized to achieve optimal results in scar improvement. CONCLUSION: Recent advancements in the treatment of facial acne scars provide promising options for individuals seeking improvement. However, these treatments have associated risks and potential adverse effects, highlighting the importance of consulting a dermatologist before beginning any treatment regimen.


Asunto(s)
Acné Vulgar , Quimioexfoliación , Humanos , Cicatriz/etiología , Cicatriz/terapia , Cicatriz/patología , Acné Vulgar/terapia , Acné Vulgar/cirugía , Dermabrasión , Retinoides/uso terapéutico , Resultado del Tratamiento
4.
ACS Appl Mater Interfaces ; 16(8): 10475-10484, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363711

RESUMEN

Helical carbon nanotube (HCNT) is regarded as one of the most promising nanomaterials due to its excellent tensile strength and superhigh stretchability. Here, a novel HCNT-woven film (HWF) is proposed, and its in-plane and out-of-plane mechanical properties are systematically investigated via molecular dynamics (MD) simulation. The MD results show that HWF possesses highly stretchable capability resulting from sliding and straightening of CNT segments, and the maximum tensile strain can reach 2113%. Furthermore, the HWF presents an obvious tensile mechanical anisotropy. The torsion failure is the main fracture mode when the HWF is stretched along the longitudinal direction. However, when the HWF is stretched along the transverse direction, the fracture is mainly caused by intertube compression. On the other hand, the HWF can dissipate large amount of kinetic energy of projectile via sliding and fracture of HCNTs, leading to high specific penetration energy. This work provides a theoretical guidance for designing and fabricating next-generation superstrong two-dimensional CNT-based nanomaterials.

5.
Curr Pharm Des ; 29(30): 2387-2395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37855363

RESUMEN

BACKGROUND: In this study, we aimed to clarify the role and mechanism by which Cathepsin D (CTSD) mediates the advanced glycation end products (AGEs)-induced proliferation of vascular smooth muscle cells (VSMCs). METHODS: We conducted a Western blotting assay and co-immunoprecipitation assay to detect the expression of target proteins and the interaction between different proteins. Cell Counting Kit-8 (CCK-8) assay and 5- ethynyl-2'-deoxyuridine (EdU) were used to evaluate the proliferation. RESULTS: AGEs significantly promoted phenotypic switching and proliferation of VSMCs in a concentration-dependent manner. This effect of AGEs was accompanied by inhibition of CTSD. Both the proliferation of VSMCs and inhibition of CTSD induced by AGEs could be attenuated by the specific inhibitor of the receptor for advanced glycation end products (RAGE), FPS-ZM1. Overexpression of CTSD significantly alleviated these effects of AGEs on VSMCs. The mechanism of CTSD action in VSMCs was also explored. Overexpression of CTSD reduced the activation of p-ERK caused by AGEs. By contrast, the knockdown of CTSD, elicited using a plasmid containing short hairpin RNA (shRNA) against CTSD, further increased the activation of p-ERK compared to AGEs alone. Additionally, co-immunoprecipitation studies revealed an endogenous interaction between CTSD, a protease, and p-ERK, its potential substrate. CONCLUSION: It has been demonstrated that CTSD downregulates the level of phosphorylated ERK by degrading its target, and this interaction plays a critical role in the proliferation of VSMCs induced by the AGE/RAGE axis. These results provide a novel insight into the prevention and treatment of vascular complications in diabetes.


Asunto(s)
Productos Finales de Glicación Avanzada , Músculo Liso Vascular , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Músculo Liso Vascular/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacología , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
6.
Nano Lett ; 23(19): 9065-9072, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37772787

RESUMEN

Two-dimensional (2D) transition metal carbides/nitrides (MXenes) are promising nanomaterials due to their remarkable mechanical and electrical properties. However, the out-of-plane mechanical properties of MXene under impact loading remain unclear. Here, particular impact-resistant fracture behaviors and energy dissipation mechanisms of MXene were systemically investigated via molecular dynamics (MD) simulation. Specifically, it was found that the specific penetration energy of MXene exceeds most conventional impact-resistant materials, such as aluminum and polycarbonate. Two kinds of novel energy dissipation mechanisms, including radial fracture and crushed fracture under different impact velocities, are revealed. In addition, the sandwiched atomic-layer structure of MXene can deflect cracks and restrain their propagation to some extent, enabling the cracked MXene to retain remarkable resistance. This work provides in-depth insights into the impact-resistance of MXene, laying a foundation for its future applications.

7.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37420753

RESUMEN

Citrus has become a pivotal industry for the rapid development of agriculture and increasing farmers' incomes in the main production areas of southern China. Knowing how to diagnose and control citrus huanglongbing has always been a challenge for fruit farmers. To promptly recognize the diagnosis of citrus huanglongbing, a new classification model of citrus huanglongbing was established based on MobileNetV2 with a convolutional block attention module (CBAM-MobileNetV2) and transfer learning. First, the convolution features were extracted using convolution modules to capture high-level object-based information. Second, an attention module was utilized to capture interesting semantic information. Third, the convolution module and attention module were combined to fuse these two types of information. Last, a new fully connected layer and a softmax layer were established. The collected 751 citrus huanglongbing images, with sizes of 3648 × 2736, were divided into early, middle, and late leaf images with different disease degrees, and were enhanced to 6008 leaf images with sizes of 512 × 512, including 2360 early citrus huanglongbing images, 2024 middle citrus huanglongbing images, and 1624 late citrus huanglongbing images. In total, 80% and 20% of the collected citrus huanglongbing images were assigned to the training set and the test set, respectively. The effects of different transfer learning methods, different model training effects, and initial learning rates on model performance were analyzed. The results show that with the same model and initial learning rate, the transfer learning method of parameter fine tuning was obviously better than the transfer learning method of parameter freezing, and that the recognition accuracy of the test set improved by 1.02~13.6%. The recognition accuracy of the citrus huanglongbing image recognition model based on CBAM-MobileNetV2 and transfer learning was 98.75% at an initial learning rate of 0.001, and the loss value was 0.0748. The accuracy rates of the MobileNetV2, Xception, and InceptionV3 network models were 98.14%, 96.96%, and 97.55%, respectively, and the effect was not as significant as that of CBAM-MobileNetV2. Therefore, based on CBAM-MobileNetV2 and transfer learning, an image recognition model of citrus huanglongbing images with high recognition accuracy could be constructed.


Asunto(s)
Citrus , Aprendizaje , Agricultura , China , Aprendizaje Automático
8.
Int Immunopharmacol ; 118: 110005, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36924566

RESUMEN

BACKGROUND: Accumulating evidence has shown that gut microbiota plays a key role in the progression of atopic dermatitis (AD). Fecal microbiota transplantation (FMT), as an effective method to restore gut microbiota homeostasis, has been successfully applied for treating many inflammatory diseases. However, the therapeutic effect of FMT on AD remains unclear. The following study examined the effect and mechanism of FMT on AD-skin lesions in an AD mouse model. METHODS: In this study, we exposed the shaved back skin of BALB/c mice to calcipotriol (MC903) to induce AD model. Mice were then treated with FMT, which was performed with gut microbiota from healthy mice. The gut microbiota of treated mice was tracked by 16S rRNA gene sequencing. Mice skin tissues were examined by histopathology and inflammatory cytokines change in serum by ELISA. RESULTS: FMT had a faster trend on the reversion of the increases in skin epidermal layer thicknesses and suppressed some of the representative inflammatory cytokines. The gut microbial community in the natural recovery process varied significantly in the FMT group at day 7 (ANOSIM P = 0.0229, r = 0.2593). Notably, FMT had a long-lasting and beneficial impact on the gut microbial compositions of AD mice by increasing the ratio of Firmicutes to Bacteroidetes and the amount of butyric-producing bacteria (BPB), including Erysipelotrichaceae, Lactobacillaceae, and Eubacteriacea. Furthermore, the relative abundances of gut microbiota-mediated functional pathways involved in the cell growth and death, amino acid, energy, lipid, and carbohydrate metabolisms, and immune system increased after FMT treatment. CONCLUSION: FMT modulated the gut microbiota homeostasis and affected the recovery from AD-related inflammations, suggesting that it could be used as a treatment strategy for AD patients in the clinic.


Asunto(s)
Dermatitis Atópica , Microbioma Gastrointestinal , Animales , Ratones , Trasplante de Microbiota Fecal/métodos , Dermatitis Atópica/terapia , ARN Ribosómico 16S/genética , Citocinas , Homeostasis , Heces/microbiología
9.
Int Wound J ; 20(6): 2190-2206, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36726192

RESUMEN

Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.


Asunto(s)
Queloide , Humanos , Queloide/patología , Calidad de Vida , Cicatrización de Heridas , Fibroblastos/metabolismo , Matriz Extracelular
10.
Nano Lett ; 23(4): 1416-1423, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36652343

RESUMEN

Exploring and designing two-dimensional (2D) nanomaterials for armor-piercing protection has become a research focus. Here, by molecular dynamics simulation, we revealed that the ultralight monolayer covalent organic framework (COF), one kind of novel 2D crystalline polymer, possesses superior impact-resistant capability under high-velocity impact. The calculated specific penetration energy is much higher than that of other traditional impact-resistant materials, such as steel, poly(methyl methacrylate), Kevlar, etc. It was found that the hexagonal nanopores integrated by polymer chains have large deformation compatibility resulting from flexible torsion and stretching, which can remarkably contribute to the energy dissipation. In addition, the deformable nanopores can effectively restrain the crack propagation, enable COF to resist multiple impacts. This work uncovers the extreme dynamic responses of COF under high-velocity impact and provides theoretical guidance for designing superstrong 2D polymer-based crystalline nanomaterials.

11.
RSC Adv ; 12(46): 30085-30093, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36329939

RESUMEN

In carbon nanotube fibers (CNFs) fabricated by spinning methods, it is well-known that the mechanical and thermal performances of CNFs are highly dependent on the mechanical and thermal properties of the inherent CNTs. Furthermore, long CNTs are usually preferred to assemble CNFs because the interaction and entanglement between long CNTs are effectively stronger than between short CNTs. However, in CNFs fabricated using long CNTs, the interior carbon nanotubes (CNTs) inevitably undergo both tension and torsion loading when they are stretched, which would influence the mechanical and thermal performances of CNFs. Here, molecular dynamics (MD) simulations were carried out to study the mechanical and thermal properties of individual CNTs under tension-torsion loading. As for mechanical properties, it was found that both the fracture strength and Young's modulus of CNTs decreased as the twist angle α increased. Besides, step-wise fracture happened due to stress concentration when the twisted CNTs are stretched. On the other hand, it could be seen that the thermal conductivity of CNTs decreased as α increased. This work presents the systematic investigation of the mechanical and thermal properties of CNTs under tension-torsion loading and provides a theoretical guideline for the design and fabrication of CNFs.

12.
Emerg Med Int ; 2022: 4452687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982730

RESUMEN

Keloid is a fibroproliferative disorder in the skin, which manifested with extensive deposition of collagen and extracellular matrix. Its etiology remains a mystery and its recurrence rate remains high despite combinative treatment regimens. Current hypotheses of its pathogenesis centered on the role of inflammatory processes as well as immune infiltration in the microenvironment. However, there are a lot of discrepancies when it comes to the verification of certain well-recognized pathways involved in the dysfunctional fibroblast. Further exploration and characterization are required to reveal the driving force and even leading genes responsible for keloid formation. In this study, we provided supportive evidence of the immunologic nature of keloids distinct from normal fibroblasts and physiological scars by incorporating multiple available expressional profiles in the Gene Expression Omnibus (GEO). Through differential analyses and functional analyses, we identified a set of genes that successfully captures the dissimilarities between keloid lesions and nonlesions. They were differentially regulated in keloid samples and had opposite behavior in exposure to hydrocortisone. A key signature of six genes featuring FGF11 not only was highly correlated with significantly dysregulated fibroblast activation but also reflected various levels of immune cell infiltration. FGF11, in particular, revealed the heterogenous immunologic nature of keloid lesions. This study further supported that aberrant fibroblast was one of the main contributing factors and shed some light on investigating immune properties in future studies.

13.
Comput Biol Med ; 149: 105939, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037629

RESUMEN

BACKGROUND: Use of artificial intelligence to identify dermoscopic images has brought major breakthroughs in recent years to the early diagnosis and early treatment of skin cancer, the incidence of which is increasing year by year worldwide and poses a great threat to human health. Achievements have been made in the research of skin cancer image classification by using the deep backbone of the convolutional neural network (CNN). This approach, however, only extracts the features of small objects in the image, and cannot locate the important parts. OBJECTIVES: As a result, researchers of the paper turn to vision transformers (VIT) which has demonstrated powerful performance in traditional classification tasks. The self-attention is to improve the value of important features and suppress the features that cause noise. Specifically, an improved transformer network named SkinTrans is proposed. INNOVATIONS: To verify its efficiency, a three step procedure is followed. Firstly, a VIT network is established to verify the effectiveness of SkinTrans in skin cancer classification. Then multi-scale and overlapping sliding windows are used to serialize the image and multi-scale patch embedding is carried out which pay more attention to multi-scale features. Finally, contrastive learning is used which makes the similar data of skin cancer encode similarly so that the encoding results of different data are as different as possible. MAIN RESULTS: The experiment is carried out based on two datasets, namely (1) HAM10000: a large dataset of multi-source dermatoscopic images of common skin cancers; (2)A clinical dataset of skin cancer collected by dermoscopy. The model proposed has achieved 94.3% accuracy on HAM10000 and 94.1% accuracy on our datasets, which verifies the efficiency of SkinTrans. CONCLUSIONS: The transformer network has not only achieved good results in natural language but also achieved ideal results in the field of vision, which also lays a good foundation for skin cancer classification based on multimodal data. This paper is convinced that it will be of interest to dermatologists, clinical researchers, computer scientists and researchers in other related fields, and provide greater convenience for patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Inteligencia Artificial , Dermatólogos , Dermoscopía/métodos , Humanos , Neoplasias Cutáneas/diagnóstico por imagen
14.
Comput Math Methods Med ; 2022: 9633416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770115

RESUMEN

Melanoma is becoming increasingly common worldwide, with high rates of transformation into malignancy compared to other skin lesions. The prognosis of patients with melanoma at an advanced stage is highly unsatisfying despite the development of immunotherapy, target therapy, or combinative therapy. The major barrier to exploiting immune checkpoint therapies and achieving the best benefits clinically is resistance that can easily develop if regimens are not selected appropriately. In this study, we investigated the possibility of using immune-related genes to predict patient survival and their responses to immune checkpoint blocker therapies with the expression profiles available at The Cancer Genome Atlas (TCGA) Program plus expression data from the Gene Expression Omnibus (GEO) for validation. A five gene signature that is highly correlated with the local infiltration of cytotoxic lymphocytes in the tumor microenvironment was identified, and a scoring model was developed with stepwise regression after multivariate Cox analyses. The score calculated strongly correlates with Breslow depth, and this model effectively predicts the prognosis of patients with melanoma, whether primary or metastasized. It also depicts the heterogenous immune-related nature of melanoma by revealing different predicted responses to immune checkpoint blocker therapies through its correlation to tumor immune dysfunction and exclusion (TIDE) score.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/genética , Pronóstico , Microambiente Tumoral/genética
15.
Anatol J Cardiol ; 26(1): 29-36, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35191383

RESUMEN

OBJECTIVE: Previous studies have investigated the relationship between alcohol and ventricular structure; however, few studies have evaluated the relation between alcohol consumption and the atrium size. In this study, we aimed to test the association between alcohol consumption and left atrium (LA) size in the general population. METHODS: A population-based sample of 10,211 subjects aged ≥35 years and free from hypertension at baseline were followed from January 2012 to August 2013. Left atrial enlargement (LAE) was defined as the ratio of LA diameter to body surface area exceeding 2.4 cm/m2 in both the sexes. Independent factors for LAE were estimated by multiple logistic regression analyses. RESULTS: The study included 10,211 participants (4,751 men and 5,460 women). Left atrial diameter/body surface area (LAD/BSA) was higher in the moderate and heavy alcohol consumption groups than in the non-drinker group (non-drinker, 20.5±0.03 cm/m2; moderate, 20.8±0.09 cm/m2; and heavy, 20.6±0.06 cm/m2; p<0.001). Both the groups of moderate and heavy drinkers had a higher incidence of LAE than the non-drinker group (6.9% of non-drinkers, 9.9% of moderate drinkers, and 8.4% of heavy drinkers; p<0.001). After adjusting for related risk factors, multiple logistic regression analyses showed that moderate drinkers had an approximately 1.4-fold higher risk of LAE [odds ratio (OR): 1.387, 95% confidence interval (CI) 1.056-1.822, p=0.019] compared with the non-drinkers, and the heavy drinkers had an approximately 1.2-fold higher risk of LAE (OR: 1.229, 95% CI: 1.002-1.508, p=0.047) compared with that of the non-drinkers. CONCLUSION: Both heavy and moderate drinkers had increased odds for LAE compared with participants with no alcohol consumption in the general population.


Asunto(s)
Consumo de Bebidas Alcohólicas , Atrios Cardíacos , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/epidemiología , China/epidemiología , Estudios Transversales , Femenino , Atrios Cardíacos/diagnóstico por imagen , Humanos , Masculino , Factores de Riesgo
16.
Phys Chem Chem Phys ; 22(39): 22785-22795, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33021287

RESUMEN

Graphite carbon nitride (GCN), which can be regarded as a nitrogen heteroatom-substituted graphite framework, has attracted great attention as a new 2D layered structure material with semiconductor electronic characteristics. Using molecular dynamics simulations, the in-plane thermal conductivity and cross-plane thermal resistance of two GCN structures (i.e., triazine-based and heptazine-based) are investigated. Our results show that the in-plane thermal conductivities of the triazine-based and heptazine-based GCN monolayers along the armchair direction are 55.39 and 17.81 W m-1 K-1, respectively. The cross-plane thermal resistance decreases with increasing layer number and reaches asymptotic values of 3.6 × 10-10 and 9.3 × 10-10 m2 K W-1 at 40 layers for triazine-based and heptazine-based GCN, respectively. The in-plane thermal conductivity can be effectively manipulated by changing the temperature and applying strain, while it is insensitive to the number of layers, which is in sharp contrast to that of graphene. Moreover, the cross-plane thermal resistance decreases monotonically with temperature and coupling strength, and can be modulated by external strain. Surprisingly, the cross-plane tensile strain can reduce the thermal resistance of the heptazine-based GCN. Our study serves as a guide to groups interested in the physical properties of GCN.

17.
Phys Chem Chem Phys ; 22(20): 11537-11545, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32393941

RESUMEN

In-plane heterojunctions, obtained by seamlessly joining two or more nanoribbon edges of isolated two-dimensional atomic crystals such as graphene and hexagonal boron nitride, are emerging as nanomaterials for the development of future multifunctional devices. The thermal transport behavior at the interface of these heterojunctions plays a pivotal role in determining their functional performance. Using molecular dynamics simulations, the interfacial thermal conductance of graphene/hexagonal boron nitride (GE/BN) in-plane heterojunctions was investigated. The GE/BN heterostructure has a remarkably high interfacial thermal conductance, and thermal rectification occurs at the interface. The results also show that the interfacial thermal conductance is effectively modulated by strain and defect engineering. The atomic defect location can affect the phonon transmission at the interface. Interestingly, compared with the nitrogen doping effect, the boron doping defect can more effectively facilitate vibrational coupling at the interface in the graphene sheet. Stress distribution and vibrational spectral analyses are performed to elucidate the thermal transport mechanism. The results of this study may provide a foundation for future research attempting to manipulate the interfacial thermal conductance in other two-dimensional heterostructures.

18.
Phys Chem Chem Phys ; 21(24): 12977-12985, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31165821

RESUMEN

The thermal conductivities of single-layer BC3 (SLBC) sheets and their responses to environmental temperature, vacancy defects and external strain have been studied and compared with those of single-layer C3N (SLCN) sheets by molecular dynamics (MD) simulations. We found that SLBC and SLCN are isotropic in the basal plane and that their predicted thermal conductivities for infinite length sheets are 488.54 W m-1 K-1 and 799.87 W m-1 K-1, respectively. Despite many similar features in the structures of these materials, SLBC exhibits a lower thermal conductivity than SLCN due to stronger flexural acoustic phonon-defect scattering rates and weaker interatomic bonding stiffnesses. The vibrational density of states (VDOS) are calculated in both structures to elucidate their thermal conductivity differences. SLBC exhibits a more substantial redshift phenomenon in the high- and low-frequency domains than SLCN. In addition, the thermal conductivities of these materials exhibit decreasing trends in response to increases in temperature and defect ratio, and the temperature effect in SLBC is more substantial than that in SLCN, while the defect effect in SLBC is less substantial than that in SLCN. The influences of uniaxial compressive and tensile strains on the thermal conductivities of these materials are analysed separately. These two deformation modes cause different effects on the thermal transport behaviours of SLBC and SLCN: the effect of uniaxial compressive strain is slightly negative, while the effect of uniaxial tensile strain is initially positive and then negative. Moreover, the biaxial strains result in a more severe reduction in thermal conductivity than the uniaxial strains. Remarkably, the impact of uniaxial and biaxial tensile strains on thermal transport was stronger in SLBC than in SLCN. We propose that SLBC nanomembranes are promising candidates for various thermal applications.

19.
Drug Deliv Transl Res ; 9(1): 344-356, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30187352

RESUMEN

The aim of the present investigation was to evaluate the effect of supersaturation on the oral absorption of paclitaxel (PTX) in vivo. To achieve this, a PTX amorphous solid dispersion (ASD) was prepared by the solvent cast method. Among the enteric polymers tested, hypromellose acetate succinate (HPMCAS) MF was found to be the most suitable polymer for maintaining PTX supersaturation and inhibiting crystallization in vitro. The dissolution rate and extent of the ASD was remarkably improved compared with a physical mixture (PM) of PTX, HPMCAS-MF, and Poloxamer 188 (F68), reaching an apparent drug concentration of 25-30 µg/mL and maintaining it for more than 2 h. The liquid-liquid phase separation (LLPS) concentration of PTX in the presence of HPMCAS-MF was determined to be 23 µg/mL, which was different to that of 40 µg/mL in the absence of polymer. It indicated that HPMCAS was substantially incorporated into the drug-rich phase. Also, HPMCAS could absorb to the PTX surface and provided an interfacial barrier for crystal growth, as well as retard the incorporation of PTX from solution into the growing crystal lattice. The results of X-ray diffraction, differential scanning calorimetry analysis, and transmission electron microscopy confirmed that PTX existed in the amorphous state in the solid dispersion. Compared with the PM group, the ASD prepared with HPMCAS-MF and F68 achieved a 1.78-fold increase in relative oral bioavailability, while PTX solution yielded a 1.56-fold increase, which could be explained that the solubility and the permeability of PTX were not increased simultaneously through supersaturation in vivo. Likely, it was because Cremophor inhibited P-glycoprotein in the intestine to some extent and maintained PTX at a higher concentration for a longer time.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Intestinos/química , Paclitaxel/administración & dosificación , Polímeros/química , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Derivados de la Hipromelosa/química , Masculino , Microscopía Electrónica de Transmisión , Paclitaxel/química , Paclitaxel/farmacocinética , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley , Difracción de Rayos X
20.
Eur J Pharm Sci ; 124: 288-294, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30193858

RESUMEN

Enteric polymers have been found with absorption promotion effect on nanoparticles. To study the role of enteric polymers played in the process of oral nanoparticle delivery, Eudragit L100-55 (EU) and sodium alginate (SA) were selected as model enteric polymers and larotaxel (LTX) as model drug. Suspensions composed of LTX-loaded nanoparticles, HPMC and different enteric polymers (EU and SA) were prepared (NP@EU, NP@SA). And aspects like precipitate morphology upon contact with acid, nanoparticle encapsulation capability, in vitro drug release, intestinal residence and in vivo oral bioavailability were studied. It was found that precipitates formed by EU could encapsulate more NP in acidic environment than those of SA (>95% of EU vs. approximately 70% of SA), and this difference in NP encapsulation was found correlated with the morphology of the precipitates formed: precipitates of EU appeared as three dimensional granules with dense inner structure, while SA precipitated into film-like porous structures. Results of pharmacokinetic study indicated that both EU and SA were capable in improving LTX absorption with absolute bioavailability of 77.1% and 42.5%, respectively. And the better absorption promoting effect of NP@EU was correlated with its longer intestinal residence shown by the results of ex vivo imaging study. In conclusion, both EU and SA could improve the oral bioavailability of LTX-loaded NP, and NP encapsulation capability and intestinal residence time are considered as key factors affecting the degree of absorption promotion.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Taxoides/administración & dosificación , Resinas Acrílicas/administración & dosificación , Resinas Acrílicas/química , Administración Oral , Alginatos/administración & dosificación , Alginatos/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Portadores de Fármacos/química , Liberación de Fármacos , Absorción Intestinal , Masculino , Nanopartículas/química , Ratas Sprague-Dawley , Taxoides/química , Taxoides/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...