Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470090

RESUMEN

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.

2.
Cancers (Basel) ; 15(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067329

RESUMEN

Zinc finger protein 275 (ZNF275) is a C2H2-type transcription factor that is localized on chromosome Xq28. Whether ZNF275 participates in modulating the biological behaviors of cervical cancer has not been determined to our knowledge. The present study employed CCK-8, BrdU, flow cytometry, and a transwell assay to investigate the cell viability, proliferation, apoptosis, migration, and invasion of cervical cancer cells. The application of Western blotting and immunohistochemistry (IHC) aims to assess ZNF275 protein expression and identify the signaling pathway relevant to ZNF275-mediated effects on cervical cancer. The therapeutic impact of the combined therapy of the AKT inhibitor triciribine and cisplatin was evaluated on cervical cancer patient-derived xenograft (PDX) models expressing high ZNF275. The current research illustrated that cervical cancer tissue exhibited a higher expression of ZNF275 in contrast to the surrounding normal cervical tissue. The downregulation of ZNF275 suppressed cell viability, migration, and invasion, and facilitated the apoptosis of SiHa and HeLa cells via weakening AKT/Bcl-2 signaling pathway. Moreover, triciribine synergized with cisplatin to reduce cell proliferation, migration, and invasion, and enhanced the apoptosis of SiHa cells expressing high ZNF275. In addition, the combination treatment of triciribine and cisplatin was more effective in inducing tumor regression than single agents in cervical cancer PDX models expressing high ZNF275. Collectively, the current findings demonstrated that ZNF275 serves as a sufficiently predictive indicator of the therapeutic effectiveness of the combined treatment of triciribine and cisplatin on cervical cancer. Combining triciribine with cisplatin greatly broadens the therapeutic options for cervical cancer expressing high ZNF275, but further research is needed to confirm these results.

3.
Biomaterials ; 302: 122321, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37722183

RESUMEN

Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.


Asunto(s)
Nanoestructuras , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Manganeso/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
4.
Plant J ; 111(5): 1296-1307, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35793378

RESUMEN

Because of their high efficiency during chromosome doubling, immature haploid maize (Zea mays L.) embryos are useful for doubled haploid production. The R1-nj marker is commonly used in doubled haploid breeding and has improved the efficiency of haploid identification. However, its effectiveness is limited by genetic background and environmental factors. We addressed this technical challenge by developing an efficient and accurate haploid embryo identification marker through co-expression of two transcription factor genes (ZmC1 and ZmR2) driven by the embryo-aleurone-specific bidirectional promoter PZmBD1 ; these factors can activate anthocyanin biosynthesis in the embryo and aleurone layer during early seed development. We developed a new haploid inducer, Maize Anthocyanin Gene InduCer 1 (MAGIC1), by introducing the transgenes into the haploid inducer line CAU6. MAGIC1 could identify haploids at 12 days after pollination, which is nine days earlier than CAU6. Importantly, MAGIC1 increased haploid identification accuracy to 99.1%, compared with 88.3% for CAU6. In addition, MAGIC1 could effectively overcome the inhibition of anthocyanin synthesis in some germplasms. Furthermore, an upgraded anthocyanin marker was developed from ZmC1 and ZmR2 to generate MAGIC2, which could identify haploids from diploids due to differential anthocyanin accumulation in immature embryos, coleoptiles, sheaths, roots, leaves, and dry seeds. This haploid identification system is more efficient and accurate than the conventional R1-nj-based method, and it simplifies the haploid identification process. Therefore, this system provides technical support for large-scale doubled haploid line production.


Asunto(s)
Antocianinas , Zea mays , Antocianinas/genética , Haploidia , Fitomejoramiento , Factores de Transcripción/genética , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...