Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712166

RESUMEN

Actin remodeling is spatiotemporally regulated by surface topographical cues on the membrane for signaling across diverse biological processes. Yet, the mechanism dynamic membrane curvature prompts quick actin cytoskeletal changes in signaling remain elusive. Leveraging the precision of nanolithography to control membrane curvature, we reconstructed catalytic reactions from the detection of nano-scale curvature by sensing molecules to the initiation of actin polymerization, which is challenging to study quantitatively in living cells. We show that this process occurs via topographical signal-triggered condensation and activation of the actin nucleation-promoting factor (NPF), Neuronal Wiskott-Aldrich Syndrome protein (N-WASP), which is orchestrated by curvature-sensing BAR-domain protein FBP17. Such N-WASP activation is fine-tuned by optimizing FBP17 to N-WASP stoichiometry over different curvature radii, allowing a curvature-guided macromolecular assembly pattern for polymerizing actin network locally. Our findings shed light on the intricate relationship between changes in curvature and actin remodeling via spatiotemporal regulation of NPF/BAR complex condensation.

2.
EMBO J ; 43(9): 1898-1918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565952

RESUMEN

We introduce MolPhase, an advanced algorithm for predicting protein phase separation (PS) behavior that improves accuracy and reliability by utilizing diverse physicochemical features and extensive experimental datasets. MolPhase applies a user-friendly interface to compare distinct biophysical features side-by-side along protein sequences. By additional comparison with structural predictions, MolPhase enables efficient predictions of new phase-separating proteins and guides hypothesis generation and experimental design. Key contributing factors underlying MolPhase include electrostatic pi-interactions, disorder, and prion-like domains. As an example, MolPhase finds that phytobacterial type III effectors (T3Es) are highly prone to homotypic PS, which was experimentally validated in vitro biochemically and in vivo in plants, mimicking their injection and accumulation in the host during microbial infection. The physicochemical characteristics of T3Es dictate their patterns of association for multivalent interactions, influencing the material properties of phase-separating droplets based on the surrounding microenvironment in vivo or in vitro. Robust integration of MolPhase's effective prediction and experimental validation exhibit the potential to evaluate and explore how biomolecule PS functions in biological systems.


Asunto(s)
Algoritmos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas/química , Proteínas/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/química , Separación de Fases
4.
Nat Commun ; 14(1): 5766, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723156

RESUMEN

Localized interlayer excitons (LIXs) in two-dimensional moiré superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moiré MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moiré heterostructures and pave new directions for engineering interlayer exciton properties in moiré superlattices.

5.
Plant Physiol ; 194(1): 137-152, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647538

RESUMEN

The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a ß-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Reconocimiento de Inmunidad Innata , Glucanos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Celulosa/metabolismo , Inmunidad de la Planta
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1064-1074, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475548

RESUMEN

Membraneless organelles (MLO) regulate diverse biological processes in a spatiotemporally controlled manner spanning from inside to outside of the cells. The plasma membrane (PM) at the cell surface serves as a central platform for forming multi-component signaling hubs that sense mechanical and chemical cues during physiological and pathological conditions. During signal transduction, the assembly and formation of membrane-bound MLO are dynamically tunable depending on the physicochemical properties of the surrounding environment and partitioning biomolecules. Biomechanical properties of MLO-associated membrane structures can control the microenvironment for biomolecular interactions and assembly. Lipid-protein complex interactions determine the catalytic region's assembly pattern and assembly rate and, thereby, the amplitude of activities. In this review, we will focus on how cell surface microenvironments, including membrane curvature, surface topology and tension, lipid-phase separation, and adhesion force, guide the assembly of PM-associated MLO for cell signal transductions.


Asunto(s)
Condensados Biomoleculares , Membrana Celular , Mecanotransducción Celular , Membrana Celular/fisiología , Condensados Biomoleculares/fisiología , Adhesión Celular , Lípidos de la Membrana , Animales
7.
Cell Rep ; 42(6): 112594, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37269287

RESUMEN

Coronins play critical roles in actin network formation. The diverse functions of coronins are regulated by the structured N-terminal ß propeller and the C-terminal coiled coil (CC). However, less is known about a middle "unique region" (UR), which is an intrinsically disordered region (IDR). The UR/IDR is an evolutionarily conserved signature in the coronin family. By integrating biochemical and cell biology experiments, coarse-grained simulations, and protein engineering, we find that the IDR optimizes the biochemical activities of coronins in vivo and in vitro. The budding yeast coronin IDR plays essential roles in regulating Crn1 activity by fine-tuning CC oligomerization and maintaining Crn1 as a tetramer. The IDR-guided optimization of Crn1 oligomerization is critical for F-actin cross-linking and regulation of Arp2/3-mediated actin polymerization. The final oligomerization status and homogeneity of Crn1 are contributed by three examined factors: helix packing, the energy landscape of the CC, and the length and molecular grammar of the IDR.


Asunto(s)
Citoesqueleto de Actina , Actinas , Proteínas Intrínsecamente Desordenadas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Polimerizacion , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/fisiología , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Saccharomyces cerevisiae/genética , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
8.
Curr Opin Plant Biol ; 74: 102374, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148673

RESUMEN

Membraneless organelles participate in diverse spatiotemporal regulation of cellular signal transduction by recruiting necessary signaling factors. During host-pathogen interactions, the plasma membrane (PM) at the interface between the plant and microbes serves as a central platform for forming multicomponent immune signaling hubs. The macromolecular condensation of the immune complex and regulators is important in regulating immune signaling outputs regarding strength, timing, and crosstalk between signaling pathways. This review discusses mechanisms that regulate specific and crosstalk of plant immune signal transduction pathways through macromolecular assembly and condensation.


Asunto(s)
Condensados Biomoleculares , Transducción de Señal , Plantas , Membrana Celular , Orgánulos/fisiología
9.
Nano Lett ; 23(11): 4991-4996, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37205843

RESUMEN

The omnipresence of hexagonal boron nitride (hBN) in devices embedding two-dimensional materials has prompted it as the most sought after platform to implement quantum sensing due to its testing while operating capability. The negatively charged boron vacancy (VB-) in hBN plays a prominent role, as it can be easily generated while its spin population can be initialized and read out by optical means at room-temperature. But the lower quantum yield hinders its widespread use as an integrated quantum sensor. Here, we demonstrate an emission enhancement amounting to 400 by nanotrench arrays compatible with coplanar waveguide (CPW) electrodes employed for spin-state detection. By monitoring the reflectance spectrum of the resonators as additional layers of hBN are transferred, we have optimized the overall hBN/nanotrench optical response, maximizing thereby the luminescence enhancement. Based on these finely tuned heterostructures, we achieved an enhanced DC magnetic field sensitivity as high as 6 × 10-5 T/Hz1/2.

10.
Nat Plants ; 9(2): 343-354, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747051

RESUMEN

Photoperiodic plants perceive changes in day length as seasonal cues to orchestrate their vegetative and reproductive growth. Although it is known that the floral transition of photoperiod-sensitive plants is tightly controlled by day length, how photoperiod affects their post-flowering development remains to be clearly defined, as do the underlying mechanisms. Here we demonstrate that photoperiod plays a prominent role in seed development. We found that long-day (LD) and short-day (SD) plants produce larger seeds under LD and SD conditions, respectively; however, seed size remains unchanged when CONSTANS (CO), the central regulatory gene of the photoperiodic response pathway, is mutated in Arabidopsis and soybean. We further found that CO directly represses the transcription of AP2 (a known regulatory gene of seed development) under LD conditions in Arabidopsis and SD conditions in soybean, thereby controlling seed size in a photoperiod-dependent manner, and that these effects are exerted through regulation of the proliferation of seed coat epidermal cells. Collectively, our findings reveal that a crucial regulatory cascade involving CO-AP2 modulates photoperiod-mediated seed development in plants and provide new insights into how plants with different photoperiod response types perceive seasonal changes that enable them to optimize their reproductive growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fotoperiodo , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Semillas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
11.
ACS Appl Mater Interfaces ; 15(3): 3772-3780, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36625710

RESUMEN

Arrays of nanoparticle-supported lipid bilayers (nanoSLB) are lipid-coated nanopatterned interfaces that provide a platform to study curved model biological membranes using surface-sensitive techniques. We combined scattering techniques with direct imaging, to gain access to sub-nanometer scale structural information on stable nanoparticle monolayers assembled on silicon crystals in a noncovalent manner using a Langmuir-Schaefer deposition. The structure of supported lipid bilayers formed on the nanoparticle arrays via vesicle fusion was investigated using a combination of grazing incidence X-ray and neutron scattering techniques complemented by fluorescence microscopy imaging. Ordered nanoparticle assemblies were shown to be suitable and stable substrates for the formation of curved and fluid lipid bilayers that retained lateral mobility, as shown by fluorescence recovery after photobleaching and quartz crystal microbalance measurements. Neutron reflectometry revealed the formation of high-coverage lipid bilayers around the spherical particles together with a flat lipid bilayer on the substrate below the nanoparticles. The presence of coexisting flat and curved supported lipid bilayers on the same substrate, combined with the sub-nanometer accuracy and isotopic sensitivity of grazing incidence neutron scattering, provides a promising novel approach to investigate curvature-dependent membrane phenomena on supported lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos , Nanopartículas , Membrana Dobles de Lípidos/química , Rayos X , Incidencia , Neutrones
12.
FEBS J ; 290(13): 3336-3354, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816016

RESUMEN

The actin cytoskeleton (AC) undergoes rapid remodelling to coordinate cellular processes during signal transduction, including changes in actin nucleation, crosslinking, and depolymerization in a time- and space-dependent manner. Switching the initial actin nucleation often provides timely control of the entire actin network formation. Located at the cell surface, the plant class I formin family is a major class of actin nucleators that rapidly respond to exterior chemical and environmental cues. Plant class I formins are structurally integrated within the plant cell wall-plasma membrane-actin cytoskeleton (CW-PM-AC) continuum, sharing similar biophysical properties to mammalian integrins that are embedded within the extracellular matrix-PM-AC continuum. In plants, perturbation of structural components of the CW-PM-AC continuum changes the biophysical properties of two dimensional-scaffolding structures, which results in uncontrolled molecular diffusion and interactions of class I formins, as well as their clustering and activities in the nucleation of the AC. Emerging studies have shown that the PM-integrated formins are highly responsive to the mechanical perturbation of CW and AC integrity changes that tune the oligomerization and condensation of formin on the cell surface. However, during diverse signalling transductions, the molecular mechanisms that spatiotemporally underlie the mechanosensing and mechanoregulation of formin for remodelling actin remain unclear. Here, the emphasis will be placed on recent developments in understanding how the molecular condensation of class I formin regulates the biochemical activities in tuning actin polymerization during plant immune signalling, as well as how the plant structural components of the CW-PM-AC continuum control formin condensation at a nanometre scale.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Animales , Actinas/metabolismo , Forminas/metabolismo , Proteínas de Microfilamentos/metabolismo , Integrinas/metabolismo , Citoesqueleto de Actina/metabolismo , Plantas/metabolismo , Mamíferos/metabolismo
13.
Trends Microbiol ; 31(1): 36-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35941062

RESUMEN

While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.


Asunto(s)
Percepción de Quorum , Pez Cebra , Animales , Bacterias/genética , Bacterias Gramnegativas
14.
Front Cell Dev Biol ; 11: 1261117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38567385

RESUMEN

The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1's interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics.

15.
Curr Biol ; 32(18): 4013-4024.e6, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35981539

RESUMEN

The first asymmetric meiotic cell divisions in mouse oocytes are driven by formin 2 (FMN2)-nucleated actin polymerization around the spindle. In this study, we investigated how FMN2 is recruited to the spindle peripheral ER and how its activity is regulated in mouse meiosis I (MI) oocytes. We show that this process is regulated by the Ran GTPase, a conserved mediator of chromatin signal, and the ER-associated protein VAPA. FMN2 contains a nuclear localization sequence (NLS) within a domain (SLD) previously shown to be required for FMN2 localization to the spindle periphery. FMN2 NLS is bound to the importin α1/ß complex, and the disruption of this interaction by RanGTP is required for FMN2 accumulation in the area proximal to the chromatin and the MI spindle. The importin-free FMN2 is then recruited to the surface of ER around the spindle through the binding of the SLD with the ER-membrane protein VAPA. We further show that FMN2 is autoinhibited through an intramolecular interaction between the SLD with the C-terminal formin homology 2 (FH2) domain that nucleates actin filaments. VAPA binding to SLD relieves the autoinhibition of FMN2, leading to localized actin polymerization. This dual control of formin-mediated actin assembly allows actin polymerization to initiate the movement of the meiotic spindle toward the cortex, an essential step in the maturation of the mammalian female gamete.


Asunto(s)
Actinas , Cromatina , Actinas/metabolismo , Animales , Cromatina/metabolismo , Femenino , Forminas , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos , Meiosis , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Oocitos/fisiología , Huso Acromático/metabolismo
17.
Mol Plant ; 15(7): 1098-1119, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35662674

RESUMEN

Plants produce a rich diversity of biological forms, and the diversity of leaves is especially notable. Mechanisms of leaf morphogenesis have been studied in the past two decades, with a growing focus on the interactive roles of mechanics in recent years. Growth of plant organs involves feedback by mechanical stress: growth induces stress, and stress affects growth and morphogenesis. Although much attention has been given to potential stress-sensing mechanisms and cellular responses, the mechanical principles guiding morphogenesis have not been well understood. Here we synthesize the overarching roles of mechanics and mechanical stress in multilevel and multiple stages of leaf morphogenesis, encompassing leaf primordium initiation, phyllotaxis and venation patterning, and the establishment of complex mature leaf shapes. Moreover, the roles of mechanics at multiscale levels, from subcellular cytoskeletal molecules to single cells to tissues at the organ scale, are articulated. By highlighting the role of mechanical buckling in the formation of three-dimensional leaf shapes, this review integrates the perspectives of mechanics and biology to provide broader insights into the mechanobiology of leaf morphogenesis.


Asunto(s)
Organogénesis de las Plantas , Plantas , Morfogénesis , Hojas de la Planta , Estrés Mecánico
18.
Biomacromolecules ; 23(6): 2562-2571, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561014

RESUMEN

Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced ß-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.


Asunto(s)
Quitosano , Mariposas Nocturnas , Animales , Quitina/química , Proteínas de Insectos/química , Insectos , Mariposas Nocturnas/metabolismo
19.
Mol Biol Cell ; 33(2): ar19, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818061

RESUMEN

Actin nucleation is achieved by collaborative teamwork of actin nucleator factors (NFs) and nucleation-promoting factors (NPFs) into functional protein complexes. Selective inter- and intramolecular interactions between the nucleation complex constituents enable diverse modes of complex assembly in initiating actin polymerization on demand. Budding yeast has two formins, Bni1 and Bnr1, which are teamed up with different NPFs. However, the selective pairing between formin NFs and NPFs into the nucleation core for actin polymerization is not completely understood. By examining the functions and interactions of NPFs and NFs via biochemistry, genetics, and mathematical modeling approaches, we found that two NPFs, Aip5 and Bud6, showed joint teamwork effort with Bni1 and Bnr1, respectively, by interacting with the C-terminal intrinsically disordered region (IDR) of formin, in which two NPFs work together to promote formin-mediated actin nucleation. Although the C-terminal IDRs of Bni1 and Bnr1 are distinct in length, each formin IDR orchestrates the recruitment of Bud6 and Aip5 cooperatively by different positioning strategies to form a functional complex. Our study demonstrated the dynamic assembly of the actin nucleation complex by recruiting multiple partners in budding yeast, which may be a general feature for effective actin nucleation by formins.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Proteínas del Citoesqueleto/metabolismo , Forminas , Proteínas de Microfilamentos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Plant ; 15(3): 398-418, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-34798312

RESUMEN

Delivery of proteins to the plasma membrane occurs via secretion, which requires tethering, docking, priming, and fusion of vesicles. In yeast and mammalian cells, an evolutionarily conserved RAB GTPase activation cascade functions together with the exocyst and SNARE proteins to coordinate vesicle transport with fusion at the plasma membrane. However, it is unclear whether this is the case in plants. In this study, we show that the small GTPase RABA2a recruits and interacts with the VAMP721/722-SYP121-SNAP33 SNARE ternary complex for membrane fusion. Through immunoprecipitation coupled with mass spectrometry analysis followed by the validatation with a series of biochemical assays, we identified the SNARE proteins VAMP721 and SYP121 as the interactors and downstream effectors of RABA2a. Further expreiments showed that RABA2a interacts with all members of the SNARE complex in its GTP-bound form and modulates the assembly of the VAMP721/722-SYP121-SNAP33 SNARE ternary complex. Intriguingly, we did not observe the interaction of the exocyst subunits with either RABA2a or theSNARE proteins in several different experiments. Neither RABA2a inactivation affects the subcellular localization or assembly of the exocystnor the exocyst subunit mutant exo84b shows the disrupted RABA2a-SNARE association or SNARE assembly, suggesting that the RABA2a-SNARE- and exocyst-mediated secretory pathways are largely independent. Consistently, our live imaging experiments reveal that the two sets of proteins follow non-overlapping trafficking routes, and genetic and cell biologyanalyses indicate that the two pathways select different cargos. Finally, we demonstrate that the plant-specific RABA2a-SNARE pathway is essential for the maintenance of potassium homeostasis in Arabisopsis seedlings. Collectively, our findings imply that higher plants might have generated different endomembrane sorting pathways during evolution and may enable the highly conserved endomembrane proteins to participate in plant-specific trafficking mechanisms for adaptation to the changing environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas de Unión al GTP Monoméricas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vías Secretoras , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...