Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 606(7912): 75-81, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650354

RESUMEN

A quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines1,2 were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing3, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware. Here we report quantum computational advantage using Borealis, a photonic processor offering dynamic programmability on all gates implemented. We carry out Gaussian boson sampling4 (GBS) on 216 squeezed modes entangled with three-dimensional connectivity5, using a time-multiplexed and photon-number-resolving architecture. On average, it would take more than 9,000 years for the best available algorithms and supercomputers to produce, using exact methods, a single sample from the programmed distribution, whereas Borealis requires only 36 µs. This runtime advantage is over 50 million times as extreme as that reported from earlier photonic machines. Ours constitutes a very large GBS experiment, registering events with up to 219 photons and a mean photon number of 125. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal.

2.
Rep Prog Phys ; 84(1): 012402, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33232945

RESUMEN

Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.

3.
Opt Express ; 28(14): 20943-20953, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680144

RESUMEN

The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum interference phenomena, and is central to many applications in quantum technologies. The fundamental effect appears when two independent and indistinguishable photons are superimposed on a beam splitter, which achieves a complete suppression of coincidences between the two output ports. Much less studied, however, is when the fields share coherence (continuous-wave lasers) or mode envelope properties (pulsed lasers). In this case, we expect the existence of two distinct and concurrent HOM interference regimes: the traditional HOM dip on the coherence length time scale, and a structured HOM interference pattern on the pulse length scale. We develop a theoretical framework that describes HOM interference for laser fields having arbitrary temporal waveforms and only partial overlap in time. We observe structured HOM interference from a continuous-wave laser via fast polarization modulation and time-resolved single photon detection fast enough to resolve these structured HOM dips.

4.
Appl Opt ; 57(23): 6750-6754, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30129621

RESUMEN

Discriminating between Fock states with a high degree of accuracy is a desirable feature for modern applications of optical quantum information processing. A well-known alternative to sophisticated photon number discriminating detectors is to split the field among a number of simple on/off detectors and infer the desired quantity from the measurement results. In this work we find an explicit analytical expression of the detection probability for any number of input photons, any number of on/off detectors, and we include quantum efficiency and a false count probability. This allows us to explicitly invert the conditional probability using Bayes' theorem and express the number of photons that we had at the input in the most unbiased way possible with ready-to-use formulas. We conclude with some examples.

5.
Sci Rep ; 6: 19944, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821619

RESUMEN

The duality principle, a cornerstone of quantum mechanics, limits the coexistence of wave and particle behaviours of quantum systems. This limitation takes a quantitative form when applied to the visibility of interference fringes and predictability of paths within a two-alternative system, which are bound by the inequality . However, if such a system is coupled to its environment, it becomes possible to obtain conditional measures of visibility and predictability, i.e. measures that are conditioned on the state of the environment. We show that in this case, the predictability and visibility values can lead to an apparent violation of the duality principle. We experimentally realize this apparent violation in a controlled manner by enforcing a fair-sampling-like loophole via postselection. This work highlights some of the subtleties that one can encounter while interpreting familiar quantities such as which-alternative information and visibility. While we concentrated on an extreme example, it is of utmost importance to realise that such subtleties might also be present in cases where the results are not obviously violating an algebraic bound, making them harder (but not any less crucial) to detect.

6.
Phys Rev Lett ; 115(16): 160505, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26550858

RESUMEN

In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.

7.
Proc Natl Acad Sci U S A ; 111(34): 12337-41, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114237

RESUMEN

In the event in which a quantum mechanical particle can pass from an initial state to a final state along two possible paths, the duality principle states that "the simultaneous observation of wave and particle behavior is prohibited" [Scully MO, Englert B-G, Walther H (1991) Nature 351:111-116]. Whereas wave behavior is associated with the observation of interference fringes, particle behavior generally corresponds to the acquisition of which-path information by means of coupling the paths to a measuring device or part of their environment. In this paper, we show how the consequences of duality change when allowing for biased sampling, that is, postselected measurements on specific degrees of freedom of the environment of the two-path state. Our work gives insight into a possible mechanism for obtaining simultaneous high which-path information and high-visibility fringes in a single experiment. Further, our results introduce previously unidentified avenues for experimental tests of duality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA