Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 289(26): 18339-46, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24828500

RESUMEN

The deoxyribonucleotide triphosphohydrolase SAMHD1 restricts lentiviral infection by depleting the dNTPs required for viral DNA synthesis. In cultured human fibroblasts SAMHD1 is expressed maximally during quiescence preventing accumulation of dNTPs outside S phase. siRNA silencing of SAMHD1 increases dNTP pools, stops cycling human cells in G1, and blocks DNA replication. Surprisingly, knock-out of the mouse gene does not affect the well being of the animals. dNTPs are both substrates and allosteric effectors for SAMHD1. In the crystal structure each subunit of the homotetrameric protein contains one substrate-binding site and two nonidentical effector-binding sites, site 1 binding dGTP, site 2 dGTP or dATP. Here we compare allosteric properties of pure recombinant human and mouse SAMHD1. Both enzymes are activated 3-4-fold by allosteric effectors. We propose that in quiescent cells where SAMHD1 is maximally expressed GTP binds to site 1 with very high affinity, stabilizing site 2 of the tetrameric structure. Any canonical dNTP can bind to site 2 and activate SAMHD1, but in cells only dATP or dTTP are present at sufficient concentrations. The apparent Km for dATP at site 2 is ∼10 µm for mouse and 1 µm for human SAMHD1, for dTTP the corresponding values are 50 and 2 µm. Tetrameric SAMHD1 is activated for the hydrolysis of any dNTP only after binding of a dNTP to site 2. The lower Km constants for human SAMHD1 induce activation at lower cellular concentrations of dNTPs thereby limiting the size of dNTP pools more efficiently in quiescent human cells.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleotidasas/química , Nucleotidasas/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Hidrólisis , Cinética , Ratones , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/genética , Nucleotidasas/genética , Proteína 1 que Contiene Dominios SAM y HD
2.
Proc Natl Acad Sci U S A ; 110(35): 14272-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23858451

RESUMEN

Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a triphosphohydrolase converting deoxynucleoside triphosphates (dNTPs) to deoxynucleosides. The enzyme was recently identified as a component of the human innate immune system that restricts HIV-1 infection by removing dNTPs required for viral DNA synthesis. SAMHD1 has deep evolutionary roots and is ubiquitous in human organs. Here we identify a general function of SAMHD1 in the regulation of dNTP pools in cultured human cells. The protein was nuclear and variably expressed during the cell cycle, maximally during quiescence and minimally during S-phase. Treatment of lung or skin fibroblasts with specific siRNAs resulted in the disappearence of SAMHD1 accompanied by loss of the cell-cycle regulation of dNTP pool sizes and dNTP imbalance. Cells accumulated in G1 phase with oversized pools and stopped growing. Following removal of the siRNA, the pools were normalized and cell growth restarted, but only after SAMHD1 had reappeared. In quiescent cultures SAMHD1 down-regulation leads to a marked expansion of dNTP pools. In all cases the largest effect was on dGTP, the preferred substrate of SAMHD1. Ribonucleotide reductase, responsible for the de novo synthesis of dNTPs, is a cytosolic enzyme maximally induced in S-phase cells. Thus, in mammalian cells the cell cycle regulation of the two main enzymes controlling dNTP pool sizes is adjusted to the requirements of DNA replication. Synthesis by the reductase peaks during S-phase, and catabolism by SAMHD1 is maximal during G1 phase when large dNTP pools would prevent cells from preparing for a new round of DNA replication.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/genética , Precursores de Ácido Nucleico/genética , Ciclo Celular , Línea Celular , Proliferación Celular , Replicación del ADN , Silenciador del Gen , Humanos , ARN Interferente Pequeño , Proteína 1 que Contiene Dominios SAM y HD
3.
Exp Cell Res ; 318(17): 2226-36, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22677043

RESUMEN

In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [(3)H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1(-) cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1(+) cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Timidina Quinasa/fisiología , Nucleótidos de Timina/metabolismo , Transporte Biológico , Western Blotting , Células Cultivadas , Citosol/enzimología , Humanos , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Exp Cell Res ; 316(20): 3443-53, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20603113

RESUMEN

The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria.


Asunto(s)
Arabinonucleósidos/metabolismo , Arabinonucleotidos/metabolismo , Ciclo Celular , Nucleótidos de Desoxiguanina/metabolismo , Desoxiguanosina/metabolismo , Guanosina Trifosfato/análogos & derivados , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Animales , Apoptosis/efectos de los fármacos , Arabinonucleósidos/farmacología , Arabinonucleotidos/biosíntesis , Biocatálisis , Células CHO , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Citosol/enzimología , ADN/metabolismo , Replicación del ADN/efectos de los fármacos , Desoxicitidina Quinasa/genética , Desoxicitidina Quinasa/metabolismo , Nucleótidos de Desoxiguanina/biosíntesis , Desoxiguanosina/farmacología , Desoxirribonucleótidos/metabolismo , Fibroblastos/enzimología , Fase G1/efectos de los fármacos , Guanosina Trifosfato/biosíntesis , Guanosina Trifosfato/metabolismo , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Cinética , Mitocondrias/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Purina-Nucleósido Fosforilasa/metabolismo , Fase S/efectos de los fármacos
5.
Mutat Res ; 703(1): 2-10, 2010 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-20561600

RESUMEN

Deoxyribonucleoside triphosphates (dNTPs) are the precursors used by DNA polymerases for replication and repair of nuclear and mitochondrial DNA in animal cells. Accurate DNA synthesis requires adequate amounts of each dNTP and appropriately balanced dNTP pools. Total cellular pool sizes are in the range of 10-100pmoles of each dNTP/million cells during S phase, with mitochondrial pools representing at most 10% of the total. In quiescent or differentiated cells pools are about 10-fold lower both in the cytosol and mitochondria. Contrary to what may be expected on the basis of the roughly equimolar abundance of the 4 nitrogen bases in DNA, the four dNTPs are present in the pools in different ratios, with pyrimidines often exceeding purines. Individual cell lines may exhibit different pool compositions even if they are derived from the same animal species. It has been known for several decades that imbalance of dNTP pools has mutagenic and cytotoxic effects, and leads to "mutator" phenotypes characterized by increased mutation frequencies. Until 10 years ago this phenomenon was considered to affect exclusively the nuclear genome. With the discovery that thymidine phosphorylase deficiency causes destabilization of mitochondrial DNA and a severe multisystemic syndrome the importance of dNTP pool balance was extended to mitochondria. Following that first discovery, mutations in other genes coding for mitochondrial or cytosolic enzymes of dNTP metabolism have been associated with mitochondrial DNA depletion syndromes. Both excess and deficiency of one dNTP may be detrimental. We study the mechanisms that in mammalian cells keep the dNTP pools in balance, and are particularly interested in the enzymes that, similar to thymidine phosphorylase, contribute to pool regulation by degrading dNTP precursors. The role of some relevant enzymes is illustrated with data obtained by chemical or genetic manipulation of their expression in cultured mammalian cells.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Nucleotidasas/fisiología , Timidina Fosforilasa/fisiología , Animales , Ciclo Celular , ADN Mitocondrial/metabolismo , Desoxiguanosina/toxicidad , Disacáridos , Electrólitos , Glutamatos , Glutatión , Histidina , Humanos , Manitol , Mutación , Timidina Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA