Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Pathogens ; 11(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36297192

RESUMEN

Theileria orientalis is an emerging apicomplexan pathogen of cattle occurring in areas populated by the principal vector tick, Haemaphysalis longicornis. Unlike transforming Theileria spp. that induce cancer-like proliferation of lymphocytes via their schizont stage, T. orientalis destroys host erythrocytes during its piroplasm phase resulting in anaemia. The underlying pathogenic processes of T. orientalis infection are poorly understood; consequently, there are no vaccines for prevention of T. orientalis infection and chemotherapeutic options are limited. To identify antigens expressed during the piroplasm phase of T. orientalis, including those which may be useful targets for future therapeutic development, we examined the proteome across three common genotypes of the parasite (Ikeda, Chitose and Buffeli) using preparations of piroplasms purified from bovine blood. A combination of Triton X-114 extraction, one-dimensional electrophoresis and LC-MS/MS identified a total of 1113 proteins across all genotypes, with less than 3% of these representing host-derived proteins. Just over three quarters of T. orientalis proteins (78%) identified were from the aqueous phase of the TX-114 extraction representing cytosolic proteins, with the remaining 22% from the detergent phase, representing membrane-associated proteins. All enzymes involved in glycolysis were expressed, suggesting that this is the major metabolic pathway used during the T. orientalis piroplasm phase. Proteins involved in binding and breakdown of haemoglobin were also identified, suggesting that T. orientalis uses haemoglobin as a source of amino acids. A number of proteins involved in host cell interaction were also identified which may be suitable targets for the development of chemotherapeutics or vaccines.

2.
Pathogens ; 11(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890045

RESUMEN

Theileria orientalis causes losses to cattle producers in Eastern Asia, Oceania and, more recently, North America. One pathogenic genotype (Ikeda) has been sequenced to the chromosomal level, while only draft genomes exist for globally distributed Chitose and Buffeli genotypes. To provide an accurate comparative gene-level analysis and help further understand their pathogenicity, we sequenced isolates of the Chitose and Buffeli genotypes of T. orientalis using long-read sequencing technology. A combination of several long-read assembly methods and short reads produced chromosomal-level assemblies for both Fish Creek (Chitose) and Goon Nure (Buffeli) isolates, including the first complete and circular apicoplast genomes generated for T. orientalis. Comparison with the Shintoku (Ikeda) reference sequence showed both large and small translocations in T. orientalis Buffeli, between chromosomes 2 and 3 and chromosomes 1 and 4, respectively. Ortholog clustering showed expansion of ABC transporter genes in Chitose and Buffeli. However, differences in several genes of unknown function, including DUF529/FAINT-domain-containing proteins, were also identified and these genes were more prevalent in Ikeda and Chitose genotypes. Phylogenetics and similarity measures were consistent with previous short-read genomic analysis. The generation of chromosomal sequences for these highly prevalent T. orientalis genotypes will also support future studies of population genetics and mixed genotype infections.

3.
Microb Genom ; 8(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748707

RESUMEN

The Pacific oyster (PO), Crassostrea gigas, is an important commercial marine species but periodically experiences large stock losses due to disease events known as summer mortality. Summer mortality has been linked to environmental perturbations and numerous viral and bacterial agents, indicating this disease is multifactorial in nature. In 2013 and 2014, several summer mortality events occurred within the Port Stephens estuary (NSW, Australia). Extensive culture and molecular-based investigations were undertaken and several potentially pathogenic Vibrio species were identified. To improve species identification and genomically characterise isolates obtained from this outbreak, whole-genome sequencing (WGS) and subsequent genomic analyses were performed on 48 bacterial isolates, as well as a further nine isolates from other summer mortality studies using the same batch of juveniles. Average nucleotide identity (ANI) identified most isolates to the species level and included members of the Photobacterium, Pseudoalteromonas, Shewanella and Vibrio genera, with Vibrio species making up more than two-thirds of all species identified. Construction of a phylogenomic tree, ANI analysis, and pan-genome analysis of the 57 isolates represents the most comprehensive culture-based phylogenomic survey of Vibrios during a PO summer mortality event in Australian waters and revealed large genomic diversity in many of the identified species. Our analysis revealed limited and inconsistent associations between isolate species and their geographical origins, or host health status. Together with ANI and pan-genome results, these inconsistencies suggest that to determine the role that microbes may have in Pacific oyster summer mortality events, isolate identification must be at the taxonomic level of strain. Our WGS data (specifically, the accessory genomes) differentiated bacterial strains, and coupled with associated metadata, highlight the possibility of predicting a strain's environmental niche and level of pathogenicity.


Asunto(s)
Crassostrea , Gammaproteobacteria , Vibrio , Animales , Filogenia , Australia/epidemiología , Brotes de Enfermedades
4.
Genomics ; 113(1 Pt 2): 677-688, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017625

RESUMEN

Perkinsus spp. parasites have significant impact on aquaculture and wild mollusc populations. We sequenced the genomes of five monoclonal isolates of Perkinsus olseni and one Perkinsus chesapeaki from international sources. Sequence analysis revealed similar levels of repetitive sequence within species, a polyploid genome structure, and substantially higher heterozygosity in Oceanian-sourced isolates. We also identified tandem replication of the rRNA transcriptional unit, with high strain variation. Characterized gene content was broadly similar amongst all Perkinsus spp. but P. olseni Oceanian isolates contained an elevated number of genes compared to other P. olseni isolates and cox3 could not be identified in any Perkinsus spp. sequence. Phylogenetics and average nucleotide identity scans were consistent with all P. olseni isolates being within one species. These are the first genome sequences generated for both P. olseni and P. chesapeaki and will allow future advances in diagnostic design and population genomics of these important aquatic parasites.


Asunto(s)
Alveolados/genética , Genoma de Protozoos , Polimorfismo Genético , Poliploidía , Complejo IV de Transporte de Electrones/genética , Pérdida de Heterocigocidad , Proteínas Protozoarias/genética
5.
Emerg Microbes Infect ; 7(1): 88, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29765033

RESUMEN

Chlamydia psittaci is an avian pathogen capable of spill-over infections to humans. A parrot C. psittaci strain was recently detected in an equine reproductive loss case associated with a subsequent cluster of human C. psittaci infections. In this study, we screened for C. psittaci in cases of equine reproductive loss reported in regional New South Wales, Australia during the 2016 foaling season. C. psittaci specific-PCR screening of foetal and placental tissue samples from cases of equine abortion (n = 161) and foals with compromised health status (n = 38) revealed C. psittaci positivity of 21.1% and 23.7%, respectively. There was a statistically significant geographical clustering of cases ~170 km inland from the mid-coast of NSW (P < 0.001). Genomic analysis and molecular typing of C. psittaci positive samples from this study and the previous Australian equine index case revealed that the equine strains from different studs in regional NSW were clonal, while the phylogenetic analysis revealed that the C. psittaci strains from both Australian equine disease clusters belong to the parrot-associated 6BC clade, again indicative of spill-over of C. psittaci infections from native Australian parrots. The results of this work suggest that C. psittaci may be a more significant agent of equine reproductive loss than thought. A range of studies are now required to evaluate (a) the exact role that C. psittaci plays in equine reproductive loss; (b) the range of potential avian reservoirs and factors influencing infection spill-over; and


Asunto(s)
Feto Abortado/microbiología , Chlamydophila psittaci/aislamiento & purificación , Enfermedades de los Caballos/microbiología , Placenta/microbiología , Complicaciones Infecciosas del Embarazo/veterinaria , Psitacosis/veterinaria , Animales , Australia , Chlamydophila psittaci/clasificación , Chlamydophila psittaci/genética , ADN Bacteriano/genética , Femenino , Genoma Bacteriano/genética , Caballos , Tipificación Molecular , Loros , Embarazo , Complicaciones Infecciosas del Embarazo/microbiología , Psitacosis/microbiología
6.
BMC Genomics ; 19(1): 298, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703152

RESUMEN

BACKGROUND: Theileria orientalis (Apicomplexa: Piroplasmida) has caused clinical disease in cattle of Eastern Asia for many years and its recent rapid spread throughout Australian and New Zealand herds has caused substantial economic losses to production through cattle deaths, late term abortion and morbidity. Disease outbreaks have been linked to the detection of a pathogenic genotype of T. orientalis, genotype Ikeda, which is also responsible for disease outbreaks in Asia. Here, we sequenced and compared the draft genomes of one pathogenic (Ikeda) and two apathogenic (Chitose, Buffeli) isolates of T. orientalis sourced from Australian herds. RESULTS: Using de novo assembled sequences and a single nucleotide variant (SNV) analysis pipeline, we found extensive genetic divergence between the T. orientalis genotypes. A genome-wide phylogeny reconstructed to address continued confusion over nomenclature of this species displayed concordance with prior phylogenetic studies based on the major piroplasm surface protein (MPSP) gene. However, average nucleotide identity (ANI) values revealed that the divergence between isolates is comparable to that observed between other theilerias which represent distinct species. Analysis of SNVs revealed putative recombination between the Chitose and Buffeli genotypes and also between Australian and Japanese Ikeda isolates. Finally, to inform future vaccine studies, dN/dS ratios and surface location predictions were analysed. Six predicted surface protein targets were confirmed to be expressed during the piroplasm phase of the parasite by mass spectrometry. CONCLUSIONS: We used whole genome sequencing to demonstrate that the T. orientalis Ikeda, Chitose and Buffeli variants show substantial genetic divergence. Our data indicates that future researchers could potentially consider disease-associated Ikeda and closely related genotypes as a separate species from non-pathogenic Chitose and Buffeli.


Asunto(s)
Genoma de Protozoos , Proteínas Protozoarias/genética , Theileria/clasificación , Theileria/genética , Theileriosis/parasitología , Secuenciación Completa del Genoma/métodos , Animales , Australia/epidemiología , Bovinos , ADN Protozoario/genética , Genotipo , Filogenia , Especificidad de la Especie , Theileria/aislamiento & purificación , Theileriosis/epidemiología
7.
Environ Microbiol Rep ; 8(1): 3-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26663762

RESUMEN

A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist.


Asunto(s)
Toxinas Bacterianas/metabolismo , Cianobacterias/química , Cianobacterias/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Proteómica/métodos , Cianobacterias/metabolismo , Perfilación de la Expresión Génica/tendencias , Genómica/tendencias , Proteómica/tendencias
8.
BMC Genomics ; 16: 669, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26335778

RESUMEN

BACKGROUND: Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons. RESULTS: A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared. CONCLUSIONS: Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.


Asunto(s)
Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Cianobacterias/genética , Genoma Bacteriano , Familia de Multigenes , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Productos Biológicos/química , Hidrocarburos/metabolismo , Datos de Secuencia Molecular , Péptido Sintasas/metabolismo , Metabolismo Secundario/genética , Terpenos/metabolismo
9.
Mar Genomics ; 21: 1-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25482899

RESUMEN

Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored.


Asunto(s)
Productos Biológicos/metabolismo , Cianobacterias/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Variación Genética , Genómica/métodos
10.
BMC Microbiol ; 14: 213, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25198896

RESUMEN

BACKGROUND: The hapalindole-type family of natural products is a group of hybrid isoprenoid-indole alkaloids, produced solely by members of the Subsection V cyanobacterial strains. This family broadly includes the hapalindoles, welwitindolinones, fisherindoles and ambiguines amongst others, all of which have an isonitrile- or isothiocyanate-containing indole alkaloid skeleton, with a cyclized isoprene unit. The hapalindoles are diversified into the welwitindolinones, fischerindoles and ambiguines through the employment of tailoring oxygenase, methyltransferase and prenyltransferase enzymes. We compare the genetic basis for the biosynthesis of this diverse group of natural products and identify key early biosynthetic intermediates. RESULTS: Whole genome sequencing of freshwater and terrestrial cyanobacteria Westiella intricata UH strain HT-29-1, Hapalosiphon welwitschii UH strain IC-52-3, Fischerella ambigua UTEX 1903 and Fischerella sp. ATCC 43239 led to the identification of a candidate hapalindole-type gene cluster in each strain. These were compared with the recently published ambiguine and welwitindolinone gene clusters and four unpublished clusters identified within publicly available genomes. We present detailed comparative bioinformatic analysis of the gene clusters and the biosynthesis of a pivotal indole-isonitrile intermediate resulting in both cis and trans geometrical isomers. Enzyme analyses and metabolite extractions from two hapalindole-producing Fischerella strains indicate the presence of cis and trans indole-isonitriles as biosynthetic intermediates in the early steps of the pathway. CONCLUSIONS: Interestingly, the organization of the welwitindolinone gene cluster is conserved in all producing strains but distinct from the hapalindole and ambiguine clusters. Enzymatic assays using WelI1 and WelI3 from Westiella intricata UH strain HT-29-1 demonstrated the ability to catalyze the formation of both cis and trans geometrical isomers when using a cell lysate. The enzymatic and metabolic characterization of both cis and trans indole-isonitrile intermediates implies conservation of their stereochemical integrity towards members of the ambiguine and welwitindolinone products. In summary, we present data that supports a unified biosynthetic pathway towards hapalindoles in nine individual species of cyanobacteria. Diversification of the pathway occurs later through the employment of specialized enzymatic steps towards fischerindoles, ambiguines and welwitindolinones.


Asunto(s)
Vías Biosintéticas/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Alcaloides Indólicos/metabolismo , Familia de Multigenes , Nitrilos/metabolismo , Productos Biológicos/metabolismo , Biología Computacional , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...