Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 27(15): 5019-5027, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33398888

RESUMEN

The interconversion of NO and HNO, via copper zinc superoxide dismutase (CuZnSOD), is important in biomedicine and for HNO detection. Many mechanistic questions, including the decades-long debate on reversibility, were resolved in this work. Calculations of various active-site and full-protein models show that the basic mechanism is proton-coupled electron transfer with a computed barrier of 10.98 kcal mol-1 , which is in excellent agreement with experimental results (10.62 kcal mol-1 ), and this nonheme protein-mediated reaction has many significant mechanistic differences compared with the conversions mediated by heme proteins due to geometric and electronic factors. The reasons for the irreversible nature of this conversion and models with the first thermodynamically favorable and kinetically feasible mechanism for the experimental reverse reaction were discovered. Such results are the first for nonheme enzyme mediated HNO to NO conversions, which shall facilitate other related studies and HNO probe development.


Asunto(s)
Hemoproteínas , Cobre , Óxidos de Nitrógeno , Superóxido Dismutasa , Zinc
2.
Nat Chem ; 9(3): 257-263, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28221360

RESUMEN

Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.


Asunto(s)
Cobre/química , Hierro/química , Oxidorreductasas/química , Oxígeno/química , Biocatálisis , Cobre/metabolismo , Técnicas Electroquímicas , Hierro/metabolismo , Cinética , Modelos Teóricos , Oxidación-Reducción , Oxidorreductasas/metabolismo , Espectrofotometría Infrarroja , Zinc/química
3.
J Phys Chem B ; 119(35): 11618-25, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26274812

RESUMEN

Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Oxígeno/química , Carbono/química , Quelantes/química , Hidrógeno/química , Enlace de Hidrógeno , Nitrógeno/química , Fósforo/química , Teoría Cuántica
4.
J Phys Chem Lett ; 5(6): 1022-1026, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24803995

RESUMEN

HNO has broad biological effects and pharmacological activities. Direct HNO probes for in vivo applications were recently reported, which are CuII-based complexes having fluorescence reporters with reaction to HNO resulting in CuI systems and the release of NO. Their coordination environments are similar to that in Cu,Zn-superoxide dismutase (SOD), which plays a significant role in cellular HNO/NO conversion. However, none of these conversion mechanisms are known. A quantum chemical investigation was performed here to provide structural, energetic, and electronic profiles of HNO/NO conversion pathways via the first CuII-based direct HNO probe. Results not only are consistent with experimental observations but also provide numerous structural and mechanistic details unknown before. Results also suggest the first HNO/NO conversion mechanism for Cu,Zn-SOD, as well as useful guidelines for future design of metal-based HNO probes. These results shall facilitate development of direct HNO probes and studies of HNO/NO conversions via metal complexes and metalloproteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...