Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Spine J ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173914

RESUMEN

BACKGROUND: The accurate and safe positioning of cervical pedicle screws is crucial. While augmented reality (AR) use in spine surgery has previously demonstrated clinical utility in the thoracolumbar spine, its technical feasibility in the cervical spine remains less explored. PURPOSE: The objective of this study was to assess the precision and safety of AR-assisted pedicle screw placement in the cervical spine. STUDY DESIGN: In this experimental study, five cadaveric cervical spine models were instrumented from C3 to C7 by five different spine surgeons. The navigation accuracy and clinical screw accuracy were evaluated. METHODS: Post-procedural CT scans were evaluated for clinical accuracy by two independent neuroradiologists using the Gertzbein-Robbins scale. Technical precision was assessed by calculating the angular trajectory (°) and linear screw tip (mm) deviations in the axial and sagittal planes from the virtual pedicle screw position as recorded by the AR-guided platform during the procedure compared to the actual pedicle screw position derived from post-procedural imaging. RESULTS: A total of forty-one pedicle screws were placed in five cervical cadavers, with each of the five surgeons navigating at least seven screws. Gertzbein-Robbins grade of A or B was achieved in 100% of cases. The mean values for tip and trajectory errors in the axial and sagittal planes between the virtual versus actual position of the screws was less than 3 mm and 30°, respectively (p<0.05). None of the cervical screws violated the cortex by more than 2 mm or displaced neurovascular structures. CONCLUSIONS: AR-assisted cervical pedicle screw placement in cadavers demonstrated clinical accuracy comparable to existing literature values for image-guided navigation methods for the cervical spine. CLINICAL SIGNIFICANCE: This study provides technical and clinical accuracy data that supports clinical trialing of AR-assisted subaxial cervical pedicle screw placement.

2.
Nat Commun ; 15(1): 5695, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972878

RESUMEN

Adaptation transcends scale in both natural and artificial systems, but delineating the causative factors of this phenomenon requires urgent clarification. Herein, we unravel the molecular requirements for adaptation and establish a link to rationalize adaptive behavior on a self-assembled level. These concepts are established by analyzing a model compound exhibiting both light- and pH-responsive units, which enable the combined or independent application of different stimuli. On a molecular level, adaptation arises from coupled stimuli, as the final outcome of the system depends on their sequence of application. However, in a self-assembled state, a single stimulus suffices to induce adaptation as a result of collective molecular behavior and the reversibility of non-covalent interactions. Our findings go beyond state-of-the-art (multi)stimuli-responsive systems and allow us to draw up design guidelines for adaptive behavior both at the molecular and supramolecular levels, which are fundamental criteria for the realization of intelligent matter.

3.
Inorg Chem ; 63(19): 8698-8709, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38688036

RESUMEN

Li3Y1-xInxCl6 undergoes a phase transition from trigonal to monoclinic via an intermediate orthorhombic phase. Although the trigonal yttrium containing the end member phase, Li3YCl6, synthesized by a mechanochemical route, is known to exhibit stacking fault disorder, not much is known about the monoclinic phases of the serial composition Li3Y1-xInxCl6. This work aims to shed light on the influence of the indium substitution on the phase evolution, along with the evolution of stacking fault disorder using X-ray and neutron powder diffraction together with solid-state nuclear magnetic resonance spectroscopy, studying the lithium-ion diffusion. Although Li3Y1-xInxCl6 with x ≤ 0.1 exhibits an ordered trigonal structure like Li3YCl6, a large degree of stacking fault disorder is observed in the monoclinic phases for the x ≥ 0.3 compositions. The stacking fault disorder materializes as a crystallographic intergrowth of faultless domains with staggered layers stacked in a uniform layer stacking, along with faulted domains with randomized staggered layer stacking. This work shows how structurally complex even the "simple" series of solid solutions can be in this class of halide-based lithium-ion conductors, as apparent from difficulties in finding a consistent structural descriptor for the ionic transport.

4.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38681674

RESUMEN

Optogenetics is a powerful tool used to manipulate physiological processes in animals through cell-specific expression of genetically modified channelrhodopsins. In Drosophila melanogaster, optogenetics is frequently used for temporal control of neuronal activation or silencing through light-dependent actuation of cation and anion channelrhodopsins, respectively. The high setup costs and complexity associated with commercially available optogenetic systems prevents many investigators from exploring the use of this technology. We developed a low-cost, customizable, and easy-to-make optogenetics chamber (OptoChamber) and verified its functionality in a robust cellular assay: activity-dependent remodeling of larval motor neurons in Drosophila embryos.

5.
Oper Neurosurg (Hagerstown) ; 27(3): 316-321, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531089

RESUMEN

BACKGROUND AND OBJECTIVE: There are many surgical approaches for execution of a thoracic corpectomy. In cases of challenging deformity, traditional posterior approaches might not be sufficient to complete the resection of the vertebral body. In this technical note, we describe indications and technique for a transdural multilevel high thoracic corpectomy. METHODS: A 25-year-old man with a history of neurofibromatosis type 1 presented with instrumentation failure after a previous T1-T12 posterior spinal fusion, extensive laminectomy, and tumor resection. The patient presented with progressive back pain, had broad dural ectasia, and a progressive kyphotic rotational and anteriorly translated spinal deformity. To resect the medial-most aspect of the vertebral body, a bilateral extracavitary approach was attempted, but was found insufficient. A transdural approach was subsequently performed. A left paramedian durotomy was made, followed by generous arachnoid dissection, bilateral dentate ligament division, and T4 rootlet sacrifice to mobilize the spinal cord. A ventral durotomy was then made and the ventral dura was reflected over the spinal cord to protect it while drilling. The corpectomy was then completed. The ventral and dorsal durotomies were closed primarily and reinforced with fibrin glue and fibrin sealant patch. The corpectomy defect was filled with nonstructural autograft. RESULTS: The focal kyphosis was corrected with a combination of rod contouring, compression, and in situ bending. During the surgery, the patient had stable neuromonitoring data, and postoperatively had no neurological deficits. On follow-up until 1 year, the patient presented with no signs of cerebrospinal spinal leaks, no motor or sensory deficits, minimal incisional pain, and significantly improved posture. CONCLUSION: Complex high thoracic (T3-5) ventral pathology inaccessible via a bilateral extracavitary approach may be accessed via a transdural approach as opposed to an anterior/lateral transthoracic approach that requires mobilization of cardiovascular structures or scapula.


Asunto(s)
Vértebras Torácicas , Humanos , Masculino , Adulto , Vértebras Torácicas/cirugía , Vértebras Torácicas/diagnóstico por imagen , Procedimientos de Cirugía Plástica/métodos , Duramadre/cirugía , Fusión Vertebral/métodos , Laminectomía/métodos , Neurofibromatosis 1/cirugía , Neurofibromatosis 1/complicaciones
6.
J Am Chem Soc ; 146(12): 8362-8371, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483326

RESUMEN

Emulsions are indispensable in everyday life, and the demand for emulsions' diversity and control of properties is therefore substantial. As emulsions possess a high internal surface area, an understanding of the oil/water (o/w) interfaces at the molecular level is fundamental but often impaired by experimental limitations to probe emulsion interfaces in situ. Here, we have used light-responsive surfactants (butyl-AAP) that can photoisomerize between E and Z isomers by visible and UV light irradiation to tune the emulsion interfaces. This causes massive changes in the interface tension at the extended o/w interfaces in macroemulsions and a drastic shift in the surfactants' critical micelle concentration, which we show can be used to control both the stability and phase separation. Strikingly different from macroemulsions are nanoemulsions (RH ∼90 nm) as these are not susceptible to E/Z photoisomerization of the surfactants in terms of changes in their droplet size or ζ-potential. However, in situ second-harmonic scattering and pulsed-field gradient nuclear magnetic resonance (NMR) experiments show dramatic and reversible changes in the surface excess of surfactants at the nanoscopic interfaces. The apparent differences in ζ-potentials and surface excess provide evidence for a fixed charge to particle size ratio and the need for counterion condensation to renormalize the particle charge to a critical charge, which is markedly different compared to the behavior of very large particles in macroemulsions. Thus, our findings may have broader implications as the electrostatic stabilization of nanoparticles requires much lower surfactant concentrations, allowing for a more sustainable use of surfactants.

7.
Medicina (Kaunas) ; 60(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399619

RESUMEN

Background and Objectives: Advances in virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies have resulted in their increased application across many medical specialties. VR's main application has been for teaching and preparatory roles, while AR has been mostly used as a surgical adjunct. The objective of this study is to discuss the various applications and prospects for VR, AR, and MR specifically as they relate to spine surgery. Materials and Methods: A systematic review was conducted to examine the current applications of VR, AR, and MR with a focus on spine surgery. A literature search of two electronic databases (PubMed and Scopus) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The study quality was assessed using the MERSQI score for educational research studies, QUACS for cadaveric studies, and the JBI critical appraisal tools for clinical studies. Results: A total of 228 articles were identified in the primary literature review. Following title/abstract screening and full-text review, 46 articles were included in the review. These articles comprised nine studies performed in artificial models, nine cadaveric studies, four clinical case studies, nineteen clinical case series, one clinical case-control study, and four clinical parallel control studies. Teaching applications utilizing holographic overlays are the most intensively studied aspect of AR/VR; the most simulated surgical procedure is pedicle screw placement. Conclusions: VR provides a reproducible and robust medium for surgical training through surgical simulations and for patient education through various platforms. Existing AR/MR platforms enhance the accuracy and precision of spine surgeries and show promise as a surgical adjunct.


Asunto(s)
Realidad Aumentada , Columna Vertebral , Realidad Virtual , Humanos , Educación del Paciente como Asunto/métodos , Columna Vertebral/cirugía
8.
Medicina (Kaunas) ; 60(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38399568

RESUMEN

Background and Objectives: Augmented reality head-mounted display (AR-HMD) is a novel technology that provides surgeons with a real-time CT-guided 3-dimensional recapitulation of a patient's spinal anatomy. In this case series, we explore the use of AR-HMD alongside more traditional robotic assistance in surgical spine trauma cases to determine their effect on operative costs and perioperative outcomes. Materials and Methods: We retrospectively reviewed trauma patients who underwent pedicle screw placement surgery guided by AR-HMD or robotic-assisted platforms at an academic tertiary care center between 1 January 2021 and 31 December 2022. Outcome distributions were compared using the Mann-Whitney U test. Results: The AR cohort (n = 9) had a mean age of 66 years, BMI of 29.4 kg/m2, Charlson Comorbidity Index (CCI) of 4.1, and Surgical Invasiveness Index (SII) of 8.8. In total, 77 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 378 mL, 0.78 units transfused, 398 min spent in the operating room, and a 20-day LOS. The robotic cohort (n = 13) had a mean age of 56 years, BMI of 27.1 kg/m2, CCI of 3.8, and SII of 14.2. In total, 128 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 432 mL, 0.46 units transfused units used, 331 min spent in the operating room, and a 10.4-day LOS. No significant difference was found between the two cohorts in any outcome metrics. Conclusions: Although the need to address urgent spinal conditions poses a significant challenge to the implementation of innovative technologies in spine surgery, this study represents an initial effort to show that AR-HMD can yield comparable outcomes to traditional robotic surgical techniques. Moreover, it highlights the potential for AR-HMD to be readily integrated into Level 1 trauma centers without requiring extensive modifications or adjustments.


Asunto(s)
Realidad Aumentada , Fusión Vertebral , Cirugía Asistida por Computador , Humanos , Anciano , Persona de Mediana Edad , Cirugía Asistida por Computador/métodos , Estudios Retrospectivos , Fluoroscopía/métodos , Fusión Vertebral/métodos
9.
Cancers (Basel) ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38339281

RESUMEN

It is well-known that cancers of the same histology type can respond differently to a treatment. Thus, computational drug response prediction is of paramount importance for both preclinical drug screening studies and clinical treatment design. To build drug response prediction models, treatment response data need to be generated through screening experiments and used as input to train the prediction models. In this study, we investigate various active learning strategies of selecting experiments to generate response data for the purposes of (1) improving the performance of drug response prediction models built on the data and (2) identifying effective treatments. Here, we focus on constructing drug-specific response prediction models for cancer cell lines. Various approaches have been designed and applied to select cell lines for screening, including a random, greedy, uncertainty, diversity, combination of greedy and uncertainty, sampling-based hybrid, and iteration-based hybrid approach. All of these approaches are evaluated and compared using two criteria: (1) the number of identified hits that are selected experiments validated to be responsive, and (2) the performance of the response prediction model trained on the data of selected experiments. The analysis was conducted for 57 drugs and the results show a significant improvement on identifying hits using active learning approaches compared with the random and greedy sampling method. Active learning approaches also show an improvement on response prediction performance for some of the drugs and analysis runs compared with the greedy sampling method.

10.
J Am Chem Soc ; 146(2): 1710-1721, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175928

RESUMEN

The influence of the microstructure on the ionic conductivity and cell performance is a topic of broad scientific interest in solid-state batteries. The current understanding is that interfacial decomposition reactions during cycling induce local strain at the interfaces between solid electrolytes and the anode/cathode, as well as within the electrode composites. Characterizing the effects of internal strain on ion transport is particularly important, given the significant local chemomechanical effects caused by volumetric changes of the active materials during cycling. Here, we show the effects of internal strain on the bulk ionic transport of the argyrodite Li6PS5Br. Internal strain is reproducibly induced by applying pressures with values up to 10 GPa. An internal permanent strain is observed in the material, indicating long-range strain fields typical for dislocations. With increasing dislocation densities, an increase in the lithium ionic conductivity can be observed that extends into improved ionic transport in solid-state battery electrode composites. This work shows the potential of strain engineering as an additional approach for tuning ion conductors without changing the composition of the material itself.

11.
J Am Chem Soc ; 146(1): 1026-1034, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117539

RESUMEN

Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.

12.
J Phys Chem Lett ; 14(48): 10748-10753, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38010530

RESUMEN

We report a simple design strategy for wideband uniform-rate smooth truncation (WURST) pulses that enables ultrafast frequency sweeps to maximize the sensitivity of Carr-Purcell-Meiboom-Gill (CPMG) acquisition in static wideline nuclear magnetic resonance (NMR). Three compelling examples showcase the advantage of ultrafast frequency sweeps over currently employed WURST-CPMG protocols, demonstrating the potential of investigating materials that are typically inaccessible to static wideline NMR techniques, e.g., paramagnetic solids with short homogeneous transverse relaxation times.

13.
Chem Sci ; 14(32): 8607-8614, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37592977

RESUMEN

Precise synthesis of graphene nanoribbons (GNRs) is of great interest to chemists and materials scientists because of their unique opto-electronic properties and potential applications in carbon-based nanoelectronics and spintronics. In addition to the tunable edge structure and width, introducing curvature in GNRs is a powerful structural feature for their chemi-physical property modification. Here, we report an efficient solution synthesis of the first pyrene-based GNR (PyGNR) with curved geometry via one-pot K-region oxidation and Scholl cyclization of its corresponding well-soluble tetrahydropyrene-based polyphenylene precursor. The efficient A2B2-type Suzuki polymerization and subsequent Scholl reaction furnishes up to ∼35 nm long curved GNRs bearing cove- and armchair-edges. The construction of model compound 1, as a cutout of PyGNR, from a tetrahydropyrene-based oligophenylene precursor proves the concept and efficiency of the one-pot K-region oxidation and Scholl cyclization, which is clearly revealed by single crystal X-ray diffraction analysis. The structure and optical properties of PyGNR are investigated by Raman, FT-IR, solid-state NMR, STM and UV-Vis analysis with the support of DFT calculations. PyGNR exhibits a narrow optical bandgap of ∼1.4 eV derived from a Tauc plot, qualifying as a low-bandgap GNR. Moreover, THz spectroscopy on PyGNR estimates its macroscopic charge mobility µ as ∼3.6 cm2 V-1 s-1, outperforming several other curved GNRs reported via conventional Scholl reaction.

14.
J Am Chem Soc ; 145(13): 7147-7158, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946557

RESUMEN

Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS43- by WS42- in Na2.9Sb0.9W0.1S4 leads to a very high ionic conductivity of 41 mS cm-1 at room temperature. While pristine Na3SbS4 crystallizes in a tetragonal structure, the substituted Na2.9Sb0.9W0.1S4 crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse 121Sb NMR experiments that the short-range order of Na2.9Sb0.9W0.1S4 remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na+ substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine Na3SbS4, quasi-elastic neutron scattering and solid-state 23Na nuclear magnetic resonance measurements revealed drastically improved Na+ diffusivity and decreased activation energies for Na2.9Sb0.9W0.1S4. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.

15.
Small ; 19(20): e2206813, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732883

RESUMEN

One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π-π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.


Asunto(s)
Antineoplásicos , Quitosano , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Quitosano/química , Hidrogeles , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina/farmacología , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Liberación de Fármacos , Portadores de Fármacos/química
17.
Dalton Trans ; 52(8): 2227-2242, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36519202

RESUMEN

While phosphotellurite glasses have superior properties over SiO2-based glasses for many applications in optoelectronics and photonic devices, their high hydroxyl content limits their use in the mid-infrared range. This drawback can be overcome by fluoride addition to the formulation. In this work, we report the preparation, optical, and structural characterization of new glasses in the ternary system TeO2-xNaF-NaPO3 having the compositions 0.8TeO2-0.2[xNaF-(1 - x)NaPO3] and 0.6TeO2-0.4[xNaF-(1 - x)NaPO3] (0 ≤ x ≤ 1) obtained by the traditional melt-quenching method and labeled as T8NNx and T6NNx, respectively. Differential scanning calorimetry (DSC) reveals high thermal stability against crystallization, with Tx-Tg varying from 80 to 130 °C, depending on fluoride/phosphate ratios. Raman spectroscopy suggests that the network connectivity increases with increasing phosphate concentration. 125Te, 23Na, 31P, and 19F NMR spectroscopy provides detailed structural information about Te-O-P, Te-F, Te-O-Te, P-O-P, and P-F linkages and the charge compensation mechanism for the sodium ions. The present study is the first comprehensive structural characterization of a fluorophosphotellurite glass system.

18.
Comput Geosci ; 1712023.
Artículo en Inglés | MEDLINE | ID: mdl-39100411

RESUMEN

Background: Wildfires are increasing in magnitude, frequency, and severity. Populations in the wildland-urban interface and in downwind communities are at increased risk of exposure to elevated concentrations of fine particulate matter (PM2.5) and other harmful components of wildfire smoke. We conducted this analysis to evaluate the use of modeled predictions of wildfire smoke to create county-level measures of smoke exposure for public health research and surveillance. Methods: We evaluated four years (2015-2018) of grid-based North American Mesoscale (NAM)-derived PM2.5 forecasts from the U.S. Forest Service BlueSky modeling framework with monitoring data from the Environmental Protection Agency Air Quality System (AQS), the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Western Regional Climate Center (WRCC), and the Interagency Real Time Smoke Monitoring (AIRSIS) programs. To assess relationships between model-derived estimates and monitor-based observations, we assessed Spearman's correlations by spatial (i.e., county, level of urbanization, states in the western United States impacted by major wildfires, and climate regions) and temporal (i.e., month and wildfire activity periods) characteristics. We then generated county-level smoke estimates and examined spatial and temporal patterns in total and person-days of smoke exposure. Results: Across all counties in the coterminous United States and for all days, the correlation between county-level model- and monitor-derived PM2.5 estimates was 0.14 (p < 0.001). Correlations were stronger using data from temporary monitors and for areas and days impacted by high wildfire smoke, especially in the western United States. Correlations between county-level model- and monitor-derived estimates in non-metropolitan counties, and at higher concentrations ranged from 0.25 to 0.54 (p < 0.001). Conclusions: In general, public health practitioners and health researchers need to consider the pros and cons associated with modeled data products for conducting health analyses. Our results support the use of model-derived smoke estimates to identify communities impacted by heavy smoke events, especially during emergency response and for communities located near wildfire episodes.

19.
ACS Appl Mater Interfaces ; 14(46): 52289-52300, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36349361

RESUMEN

Environmental contamination and energy shortage are among the most critical global issues that require urgent solutions to ensure sustainable ecological balance. Rapid and ultrasensitive monitoring of water quality against pollutant contaminations using a low-cost, easy-to-operate, and environmentally friendly technology is a promising yet not commonly available solution. Here, we demonstrate the effective use of plasma-converted natural bioresources for environmental monitoring. The energy-efficient microplasmas operated at ambient conditions are used to convert diverse bioresources, including fructose, chitosan, citric acid, lignin, cellulose, and starch, into heteroatom-doped graphene quantum dots (GQDs) with controlled structures and functionalities for applications as fluorescence-based environmental nanoprobes. The simple structure of citric acid enables the production of monodispersed 3.6 nm averaged-size GQDs with excitation-independent emissions, while the saccharides including fructose, chitosan, lignin, cellulose, and starch allow the synthesis of GQDs with excitation-dependent emissions due to broader size distribution. Moreover, the presence of heteroatoms such as N and/or S in the chemical structures of chitosan and lignin coupled with the highly reactive species generated by the plasma facilitates the one-step synthesis of N, S-codoped GQDs, which offer selective detection of toxic environmental contaminants with a low limit of detection of 7.4 nM. Our work provides an insight into the rapid and green fabrication of GQDs with tunable emissions from natural resources in a scalable and sustainable manner, which is expected to generate impact in the environmental safety, energy conversion and storage, nanocatalysis, and nanomedicine fields.


Asunto(s)
Quitosano , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Lignina , Nitrógeno/química , Ácido Cítrico/química , Almidón , Fructosa
20.
Chem Sci ; 13(36): 10891-10896, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36320693

RESUMEN

Examples of isolated boron substituted nitroxide radicals are rare. The reaction of the reactive cyclic boraalkene 3 with nitrosobenzene yields a mixture of the [2 + 2] cycloaddition product 4a, the B-nitroxide radicals 5a and 6a and the azoxybenzene co-product 7avia a bora nitroso ene reaction pathway, the boron analogue of the nitroso ene reaction. The products were separated by flash chromatography, and the B-nitroxide radicals were characterized by X-ray diffraction and EPR spectroscopy. Radical 5a was shown to be a hydrogen atom abstractor. Both the B-nitroxide radicals are more easily oxidized compared to e.g. TEMPO, as shown by cyclic voltammetry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA