Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260293

RESUMEN

Coagulopathy and thromboembolism are known complications of SARS-CoV-2 infection. The mechanisms of COVID-19-associated hematologic complications involve endothelial cell and platelet dysfunction and have been intensively studied. We leveraged a prospectively collected acute COVID-19 biorepository to study the association of plasma levels of a comprehensive list of coagulation proteins with the occurrence of venous thromboembolic events (VTE). We included in our analysis 305 subjects with confirmed SARS-CoV-2 infection who presented to an urban Emergency Department with acute respiratory distress during the first COVID-19 surge in 2020; 13 (4.2%) were subsequently diagnosed with venous thromboembolism during hospitalization. Serial samples were obtained and assays were performed on two highly-multiplexed proteomic platforms. Nine coagulation proteins were differentially expressed in patients with thromboembolic events. P-selectin, a cell adhesion molecule on the surface of activated endothelial cells, displayed the strongest association with the diagnosis of VTE, independent of disease severity (p=0.0025). This supports the importance of endothelial activation in the mechanistic pathway of venous thromboembolism in COVID-19. P-selectin together with D-dimer upon hospital presentation provided better discriminative ability for VTE diagnosis than D-dimer alone.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-443609

RESUMEN

The introduction of vaccines has inspired new hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against COVID-19, thus we profiled the earliest humoral signatures in a large cohort of severe and asymptomatic COVID-19 individuals. While a SARS-CoV-2-specific immune response evolved rapidly in survivors of COVID-19, non-survivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibody evolution. Given the conservation of S2 across {beta}-coronaviruses, we found the early development of SARS-CoV-2-specific immunity occurred in tandem with pre-existing common {beta}-coronavirus OC43 humoral immunity in survivors, which was selectively also expanded in individuals that develop paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252819

RESUMEN

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) enabling entrance of the virus into cells and causing the infection termed coronavirus disease of 2019 (COVID-19). COVID-19 is a disease with a very broad spectrum of clinical manifestations, ranging from asymptomatic and subclinical infection to severe hyperinflammatory syndrome and death. MethodsThis study used data from a large longitudinal study of 306 COVID-19 positive patients and 78 COVID-19 negative patients (MGH Emergency Department COVID-19 Cohort with Olink Proteomics). Comprehensive clinical data were collected on this cohort, including 28-day outcomes classified according to the World Health Organization (WHO) COVID-19 outcomes scale. The samples were run on the Olink(R) Explore 1536 platform which includes measurement of the ACE2 protein. FindingsHigh baseline levels of ACE2 in plasma from COVID-19 patients were associated with worse WHOmax category at 28 days with OR=0.56, 95%-CI: 0.44-0.71 (P < 0.0001). This association was significant in regression models with correction for baseline characteristics, pre-existing medical conditions, and laboratory test results. High levels of ACE2 in plasma from COVID-19 patients were also significantly associated with worse WHO category at the time of blood sampling at both day 0, day 3, and day 7 (P = 0.0004, P < 0.0001, and P < 0.0001, respectively). The levels of ACE2 in plasma from COVID-19 patients with hypertension were significantly higher compared to patients without hypertension (P = 0.0045). The plasma ACE2 levels were also significantly higher in COVID-19 patients with pre-existing heart conditions and kidney disease compared with patients without these pre-existing conditions (P = 0.0363 and P = 0.0303, respectively). There was no difference in plasma ACE2 levels comparing patients with or without pre-existing lung disease, diabetes, or immunosuppressive conditions (P = 0.953, P = 0.291, and P = 0.237, respectively). The associations between high plasma levels of ACE2 and worse WHOmax category during 28 days were more pronounced in COVID-19 positive patients compared with COVID-19 negative patients but the difference was not significant in the two-way ANOVA analysis. InterpretationThis study suggests that measuring ACE2 is potentially valuable in predicting COVID-19 outcomes. Further, ACE2 levels could be a link between severe COVID-19 disease and its risk factors, namely hypertension, pre-existing heart disease and pre-existing kidney disease. The design of the data analysis using the Olink platform does not allow assessment of quantitative differences. However, previous studies have described a positive correlation between plasma ACE2 and ACE1 activity. This is interesting because ACE1 (serum ACE) analysis is a standardized test in most hospital laboratories. Therefore, our study encourages quantitative investigations of both plasma ACE 1 and 2 in COVID-19. Key PointsO_ST_ABSQuestionC_ST_ABSCan plasma levels of the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin converting enzyme 2 (ACE2), predict outcome of coronavirus disease of 2019 (COVID-19). FindingsIn this study of 306 COVID-19 positive patients, high baseline levels of ACE2 in plasma from COVID-19 patients were associated with worse outcome measured by the World Health Organization (WHO) COVID-19 outcomes scale. MeaningMeasuring ACE2 is potentially valuable in predicting COVID-19 outcomes and link COVID-19 disease and the risk factors hypertension, pre-existing heart disease and pre-existing kidney disease.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252796

RESUMEN

SARS-CoV-2 causes acute respiratory distress that can progress to multiorgan failure and death in some patients. Although severe COVID-19 disease is linked to exuberant inflammation, how SARS-CoV-2 triggers inflammation is not understood. Monocytes are sentinel blood cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D (GSDMD) pores, leading to inflammatory death (pyroptosis) and processing and release of IL-1 family cytokines, potent inflammatory mediators. Here we show that ~10% of blood monocytes in COVID-19 patients are dying and infected with SARS-CoV-2. Monocyte infection, which depends on antiviral antibodies, activates NLRP3 and AIM2 inflammasomes, caspase-1 and GSDMD cleavage and relocalization. Signs of pyroptosis (IL-1 family cytokines, LDH) in the plasma correlate with development of severe disease. Moreover, expression quantitative trait loci (eQTLs) linked to higher GSDMD expression increase the risk of severe COVID-19 disease (odds ratio, 1.3, p<0.005). These findings taken together suggest that antibody-mediated SARS-CoV-2 infection of monocytes triggers inflammation that contributes to severe COVID-19 disease pathogenesis. One sentence summaryAntibody-mediated SARS-CoV-2 infection of monocytes activates inflammation and cytokine release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...