Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-518117

RESUMEN

Emerging SARS-CoV-2 variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Although vaccine-elicited antibodies can bind Fc gamma receptors (Fc{gamma}Rs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical COVID-19 outcome, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and Fc-gamma receptor (Fc{gamma}R) KO mice, we determined the requirement for Fc effector functions to protect against SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating Fc{gamma}Rs, especially murine Fc{gamma}R III (CD16), or depleted of alveolar macrophages. After immunization with the preclinical mRNA-1273 vaccine, protection against Omicron BA.5 infection in the respiratory tract also was lost in mice lacking Fc{gamma}R III. Our passive and active immunization studies in mice suggest that Fc-Fc{gamma}R engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-513237

RESUMEN

The COVID-19 pandemic has highlighted how viral variants that escape monoclonal antibodies can limit options to control an outbreak. With the emergence of the SARS-CoV-2 Omicron variant, many clinically used antibody drug products lost in vitro and in vivo potency, including AZD7442 and its constituent, AZD1061 [VanBlargan2022, Case2022]. Rapidly modifying such antibodies to restore efficacy to emerging variants is a compelling mitigation strategy. We therefore sought to computationally design an antibody that restores neutralization of BA.1 and BA.1.1 while simultaneously maintaining efficacy against SARS-CoV-2 B.1.617.2 (Delta), beginning from COV2-2130, the progenitor of AZD1061. Here we describe COV2-2130 derivatives that achieve this goal and provide a proof-of-concept for rapid antibody adaptation addressing escape variants. Our best antibody achieves potent and broad neutralization of BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, BA.5, and BA.5.5 Omicron subvariants, where the parental COV2-2130 suffers significant potency losses. This antibody also maintains potency against Delta and WA1/2020 strains and provides protection in vivo against the strains we tested, WA1/2020, BA.1.1, and BA.5. Because our design approach is computational--driven by high-performance computing-enabled simulation, machine learning, structural bioinformatics and multi-objective optimization algorithms--it can rapidly propose redesigned antibody candidates aiming to broadly target multiple escape variants and virus mutations known or predicted to enable escape.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-511319

RESUMEN

With the success of mRNA vaccines against coronavirus disease 2019 (COVID-19), strategies can now focus on improving vaccine potency, breadth, and stability. We present the design and preclinical evaluation of domain-based mRNA vaccines encoding the wild-type spike-protein receptor-binding (RBD) and/or N-terminal domains (NTD). An NTD-RBD linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2-8{degrees}C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses and protection from viral challenge were observed against wild-type, beta, delta, or omicron (BA. 1) compared with mRNA-1273 immunized mice, especially at lower vaccine dosages. These results support clinical assessment of mRNA-1283 (NCT05137236). One Sentence SummaryA domain-based mRNA vaccine, mRNA-1283, is immunogenic and protective against SARS-CoV-2 and emerging variants in mice.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-509040

RESUMEN

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs)5-9. It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS- CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naive B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-507614

RESUMEN

The emergence of SARS-CoV-2 variants in the Omicron lineage with large numbers of substitutions in the spike protein that can evade antibody neutralization has resulted in diminished vaccine efficacy and persistent transmission. One strategy to broaden vaccine-induced immunity is to administer bivalent vaccines that encode for spike proteins from both historical and newly-emerged variant strains. Here, we evaluated the immunogenicity and protective efficacy of two bivalent vaccines that recently were authorized for use in Europe and the United States and contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary immunization series in BALB/c mice, both bivalent vaccines induced broader neutralizing antibody responses than the constituent monovalent vaccines (mRNA-1273 [Wuhan-1], mRNA-1273.529 [BA.1], and mRNA-1273-045 [BA.4/5]). When administered to K18-hACE2 transgenic mice as a booster at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines induced greater breadth and magnitude of neutralizing antibodies compared to an mRNA-1273 booster. Moreover, the response in bivalent vaccine-boosted mice was associated with increased protection against BA.5 infection and inflammation in the lung. Thus, boosting with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances immunogenicity and protection against currently circulating SARS-CoV-2 strains.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22276948

RESUMEN

SARS-CoV-2 vaccines have proven effective in eliciting an immune response capable of providing protective immunity in healthy individuals. However, whether SARS-CoV-2 vaccination induces a long-lived immune response in immunocompromised individuals is poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common immunodeficiency disorders in adults and are characterized by an impaired ability to mount robust antibody responses following infection or vaccination. Here, we present data from a prospective study in which we analyzed the B and T cell response in PAD patients following SARS-COV-2 vaccination. Unexpectedly, individuals with PAD syndromes mounted a SARS-CoV-2 specific B and CD4+ T cell response that was comparable in magnitude to healthy individuals. Many individuals with PAD syndromes displayed reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series. However, the IgG1 class-switching defect was largely rescued following mRNA booster vaccination. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naive PAD patients. Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in PAD patients that may contribute to long-term protective immunity.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-494461

RESUMEN

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-484787

RESUMEN

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants1-4, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2). Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human Fc{gamma} R transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479468

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOC) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOC. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses against VOC, as compared to non-human primates or humans, suggesting caution should be exercised when interpreting data for this animal model.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479419

RESUMEN

The B.1.1.529 Omicron variant jeopardizes vaccines designed with early pandemic spike antigens. Here, we evaluated in mice the protective activity of the Moderna mRNA-1273 vaccine against B.1.1.529 before or after boosting with preclinical mRNA-1273 or mRNA-1273.529, an Omicron-matched vaccine. Whereas two doses of mRNA-1273 vaccine induced high levels of serum neutralizing antibodies against historical WA1/2020 strains, levels were lower against B.1.1.529 and associated with infection and inflammation in the lung. A primary vaccination series with mRNA-1273.529 potently neutralized B.1.1.529 but showed limited inhibition of historical or other SARS-CoV-2 variants. However, boosting with mRNA-1273 or mRNA-1273.529 vaccines increased serum neutralizing titers and protection against B.1.1.529 infection. Nonetheless, the levels of inhibitory antibodies were higher, and viral burden and cytokines in the lung were slightly lower in mice given the Omicron-matched mRNA booster. Thus, in mice, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against B.1.1.529 infection with limited differences in efficacy measured.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-477296

RESUMEN

Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with SARS-CoV-2 infection, variants with constellations of mutations in the spike gene threaten their efficacy. Accordingly, antiviral interventions that are resistant to further virus evolution are needed. The host-derived cytokine IFN-{lambda} has been proposed as a possible treatment based on correlative studies in human COVID-19 patients. Here, we show IFN-{lambda} protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1.529 (Omicron)variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally-delivered IFN-{lambda}2 limited infection of historical or variant (B.1.351 and B.1.1.529) SARS-CoV-2 strains in the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-{lambda} was produced preferentially in epithelial cells and acted on radio-resistant cells to protect against of SARS-CoV-2 infection. Thus, inhaled IFN-{lambda} may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-476120

RESUMEN

The protective human antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus focuses on the spike (S) protein which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor- binding domain or a single dominant epitope ( supersite) on the N terminal domain (NTD). Here, using the single B cell technology LIBRA-seq, we isolated a large panel of NTD-reactive and SARS-CoV-2 neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies to the NTD supersite commonly are encoded by the IGHV1-24 gene, forming a genetic cluster that represents a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited cell-to-cell spread of virus in culture, and conferred protection in human ACE2 transgenic mice against SARS-CoV-2 challenge. This study provides insight about antibody targeting of the S protein trimer interface region, suggesting this region may be a site of virus vulnerability.

13.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22269848

RESUMEN

Patients with primary antibody deficiency syndromes (PAD) have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed PAD patients after SARS-CoV-2 vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fc{gamma}R binding, and neutralizing activities. Immunoglobulin replacement products had low anti-spike and receptor binding domain (RBD) titers and neutralizing activity. In COVID-19-naive PAD patients, anti-spike and RBD titers increased after mRNA vaccination but decreased to pre-immunization levels by 90 days. Patients vaccinated after SARS-CoV-2 infection developed higher responses comparable to healthy donors. Most vaccinated PAD patients had serum neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this was improved by boosting. Thus, currently used immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of PAD patients with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.

14.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-464900

RESUMEN

Using an unbiased interrogation of the memory B cell repertoire of convalescent COVID-19 patients, we identified human antibodies that demonstrated robust antiviral activity in vitro and efficacy in vivo against all tested SARS-CoV-2 variants. Here, we describe the pre-clinical characterization of an antibody cocktail, IMM-BCP-01, that consists of three unique, patient-derived recombinant neutralizing antibodies directed at non-overlapping surfaces on the SARS-CoV-2 spike protein. Two antibodies, IMM20184 and IMM20190 directly block spike binding to the ACE2 receptor. Binding of the third antibody, IMM20253, to its unique epitope on the outer surface of RBD, alters the conformation of the spike trimer, promoting release of spike monomers. These antibodies decreased SARS-CoV-2 infection in the lungs of Syrian golden hamsters, and efficacy in vivo efficacy was associated with broad antiviral neutralizing activity against multiple SARS-CoV-2 variants and robust antiviral effector function response, including phagocytosis, ADCC, and complement pathway activation. Our pre-clinical data demonstrate that the three antibody cocktail IMM-BCP-01 shows promising potential for preventing or treating SARS-CoV-2 infection in susceptible individuals. One sentence summaryIMM-BCP-01 cocktail triggers Spike Trimer dissociation, neutralizes all tested variants in vitro, activates a robust effector response and dose-dependently inhibits virus in vivo.

15.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-462074

RESUMEN

Human monoclonal antibody (mAb) treatments are promising for COVID-19 prevention, post-exposure prophylaxis, or therapy. However, the titer of neutralizing antibodies required for protection against SARS-CoV-2 infection remains poorly characterized. We previously described two potently neutralizing mAbs COV2-2130 and COV2-2381 targeting non-overlapping epitopes on the receptor-binding domain of SARS-CoV-2 spike protein. Here, we engineered the Fc-region of these mAbs with mutations to extend their persistence in humans and reduce interactions with Fc gamma receptors. Passive transfer of individual or combinations of the two antibodies (designated ADM03820) given prophylactically by intravenous or intramuscular route conferred virological protection in a non-human primate (NHP) model of SARS-CoV-2 infection, and ADM03820 potently neutralized SARS-CoV-2 variants of concern in vitro. We defined 6,000 as a protective serum neutralizing antibody titer in NHPs against infection for passively transferred human mAbs that acted by direct viral neutralization, which corresponded to a concentration of 20 g/mL of circulating mAb.

16.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264250

RESUMEN

Although vaccines effectively prevent COVID-19 in healthy individuals, they appear less immunogenic in individuals with chronic inflammatory diseases (CID) and/or under chronic immunosuppression, and there is uncertainty of their activity against emerging variants of concern in this population. Here, we assessed a cohort of 74 CID patients treated as monotherapy with chronic immunosuppressive drugs for functional antibody responses in serum against historical and variant SARS-CoV-2 viruses after immunization with Pfizer mRNA BNT162b2 vaccine. Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc effector function capacity in individuals treated with TNF- inhibitors, and this pattern appeared worse against the B.1.617.2 Delta virus. Within five months of vaccination, serum neutralizing titers of the majority of CID patients fell below the presumed threshold correlate for antibody-mediated protection. Thus, further vaccine boosting or administration of long-acting prophylaxis (e.g., monoclonal antibodies) likely will be required to prevent SARS-CoV-2 infection in this susceptible population.

17.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-457693

RESUMEN

Although mRNA vaccines prevent COVID-19, variants jeopardize their efficacy as immunity wanes. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike) or modified (mRNA-1273.351, designed for B.1.351 spike) preclinical Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Immunization with high or low dose formulations of mRNA vaccines induced neutralizing antibodies in serum against ancestral SARS-CoV-2 and several variants, although levels were lower particularly against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. Nonetheless, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, and serve as a possible model for waning immunity, showed breakthrough lung infection and pneumonia with B.1.617.2. Thus, as levels of immunity induced by mRNA vaccines decline, breakthrough infection and disease likely will occur with some SARS-CoV-2 variants, suggesting a need for additional booster regimens.

18.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-451375

RESUMEN

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. One-Sentence SummaryWe designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.

19.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-443267

RESUMEN

SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy and the end of the COVID-19 pandemic. We recently reported the protective activity of a single-dose intranasally-administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose-response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351 and B.1.1.28 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.

20.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-442326

RESUMEN

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...