Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260642

RESUMEN

The Australian National Cabinet four-step plan to transition to post-pandemic re-opening begins with vaccination to achieve herd protection and protection of the health system against a surge in COVID-19 cases. Assuming a pre-vaccination reproduction number for the Delta variant of 5, we show that for the current Mixed program of vaccinating over 60s with AstraZeneca and 16-60s with Pfizer we would not achieve herd immunity. We would need to cover 85% of the population (including many 5-16 year-olds to achieve herd immunity). At lower reproduction number of 3 and our current Mixed strategy, we can achieve herd immunity without vaccinating 5-15 year olds. This will be achieved at a 60% coverage pursuing a strategy targetting high transmitters or 70% coverage using a strategy targetting the vulnerable first. A reproduction number of 7 precludes achieving herd immunity, however vaccination is able to prevent 75% of deaths compared with no vaccination. We also examine the impact of vaccination on death in the event that herd immunity is not achieved. Direct effects of vaccination on reducing death are very good for both Pfizer and AstraZeneca vaccines. However we estimate that the Mixed or Pfizer program performs better than the AstraZeneca program. Furthermore, vaccination levels below the herd immunity threshold can lead to substantial (albeit incomplete) indirect protection for both vaccinated and unvaccinated populations. Given the potential for not reaching herd immunity, we need to consider what level of severe disease and death is acceptable, balanced against the consequences of ongoing aggressive control strategies. O_TEXTBOXThe known: SARS CoV-2 variants are known to be more transmissible than the original Wuhan strain, making herd immunity challenging. The new: We find that vaccinating the older-vulnerable age groups first leads to fewer deaths and is the optimal strategy vaccine coverage is under 70%. Herd immunity achieved solely through vaccinating adults is unlikely, but can still be expected to prevent substantial numbers of deaths. The implications: Australia is unlikely to achieve herd immunity unless vaccination is combined with substantial public health measures. Even without herd immunity, vaccination remains a highly effective means to mitigate the impact of COVID-19. C_TEXTBOX

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259999

RESUMEN

IntroductionAs of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. MethodsA modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. ResultsThe national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the countrys historical success in maintaining control throughout much of 2020.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254866

RESUMEN

Victoria has been Australias hardest hit state by the COVID-19 pandemic, but was successful in reversing its second wave of infections through aggressive policy interventions. The clear reversal in the epidemic trajectory combined with information on the timing and geographical scope of policy interventions offers the opportunity to estimate the relative contribution of each change. We developed a compartmental model of the COVID-19 epidemic in Victoria that incorporated age and geographical structure, and calibrated it to data on case notifications, deaths and health service needs according to the administrative divisions of Victorias healthcare, termed clusters. We achieved a good fit to epidemiological indicators, at both the state level and for individual clusters, through a combination of time-varying processes that included changes to case detection rates, population mobility, school closures, seasonal forcing, physical distancing and use of face coverings. Estimates of the risk of hospitalisation and death among persons with disease that were needed to achieve this close fit were markedly higher than international estimates, likely reflecting the concentration of the epidemic in groups at particular risk of adverse outcomes, such as residential facilities. Otherwise, most fitted parameters were consistent with the existing literature on COVID-19 epidemiology and outcomes. We estimated a significant effect for each of the calibrated time-varying processes on reducing the risk of transmission per contact, with broad estimates of the reduction in transmission risk attributable to seasonal forcing (27.8%, 95% credible interval [95%CI] 9.26-44.7% for mid-summer compared to mid-winter), but narrower estimates for the individual-level effect of physical distancing of 12.5% (95%CI 5.69-27.9%) and of face coverings of 39.1% (95%CI 31.3-45.8%). That the multi-factorial public health interventions and mobility restrictions led to the dramatic reversal in the epidemic trajectory is supported by our model results, with the mandatory face coverings likely to have been particularly important.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20208108

RESUMEN

In anticipation of COVID-19 vaccine deployment, we use an age-structured mathematical model to investigate the benefits of optimizing age-specific dose allocation to suppress the transmission, morbidity and mortality of SARS-CoV-2 and the associated disease, COVID-19. To minimize transmission, we find that the highest priority individuals across 179 countries are typically those between 30 and 59 years of age because of their high contact rates and higher risk of infection and disease. Conversely, morbidity and mortality are initially most effectively reduced by targeting 60+ year olds who are more likely to experience severe disease. However, when population-level coverage is sufficient -- such that herd immunity can be achieved through targeted dose allocation -- prioritizing middle-aged individuals becomes the most effective strategy to minimize hospitalizations and deaths. For each metric considered, we show that optimizing the allocation of vaccine doses can more than double their effectiveness.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20099036

RESUMEN

Australia is one of a few countries which has managed to control COVID-19 epidemic before a major epidemic took place. Currently with just under 7000 cases and 100 deaths, Australia is seeing less than 20 new cases per day. This is a positive outcome but makes estimation of current effective reproduction numbers difficult to estimate. Australia, like much of the world is poised to step out of lockdown and looking at which measures to relax first. We use age-based contact matrices, calibrated to Chinese data on reproduction numbers and difference in infectiousness and susceptibility of children to generate next generation matrices (NGMs) for Australia. These matrices have a spectral radius of 2.49, which is hence our estimated basic reproduction number for Australia. The effective reproduction number (Reff) for Australia during the April/May lockdown period is estimated by other means to be around 0.8. We simulate the impact of lockdown on the NGM by first applying observations through Google Mobility Report for Australia at 3 locations: home (increased contacts by 18%), work (reduced contacts by 34%) and other (reduced contacts by 40%), and we reduce schools to 3% reflecting attendance rates during lockdown. Applying macro-distancing to the NGM leads to a spectral radius of 1.76. We estimate that the further reduction of the reproduction number to current levels of Reff = 0.8 is achieved by a micro-distancing factor of 0.26. That is, in a given location, people are 26% as likely as usual to have an effective contact with another person. We apply both macro and micro-distancing to the NGMs to examine the impact of different exit strategies. We find that reopening schools is estimated to reduce Reff from 0.8 to 0.78. This is because increase in school contact is offset by decrease in home contact. The NGMs all estimate that adults aged 30-50 are responsible for the majority of transmission. We also find that micro-distancing is critically important to maintain Reff <1. There is considerable uncertainty in these estimates and a sensitivity and uncertainty analysis is presented.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20080127

RESUMEN

As of 18 April 2020, there had been 6,533 confirmed cases of COVID-19 in Australia [1]. Of these, 67 had died from the disease. The daily count of new confirmed cases was declining. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis -- for now. Analysing factors, such as the intensity and timing public health interventions, that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally. Using data from the Australian national COVID-19 database, we describe how the epidemic and public health response unfolded in Australia up to 13 April 2020. We estimate that the effective reproduction number was likely below 1 (the threshold value for control) in each Australian state since mid-March and forecast that hospital ward and intensive care unit occupancy will remain below capacity thresholds over the next two weeks.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20048009

RESUMEN

BackgroundAround the world there are examples of both effective control (e.g., South Korea, Japan) and less successful control (e.g., Italy, Spain, United States) of COVID-19 with dramatic differences in the consequent epidemic curves. Models agree that flattening the curve without controlling the epidemic completely is insufficient and will lead to an overwhelmed health service. A recent model, calibrated for the UK and US, demonstrated this starkly. MethodsWe used a simple compartmental deterministic model of COVID-19 transmission in Australia, to illustrate the dynamics resulting from shifting or flattening the curve versus completely squashing it. ResultsWe find that when the reproduction number is close to one, a small decrease in transmission leads to a large reduction in burden (i.e., cases, deaths and hospitalisations), but achieving this early in the epidemic through social distancing interventions also implies that the community will not reach herd immunity. ConclusionsAustralia needs not just to shift and flatten the curve, but to squash it by getting the reproduction number below one. This will require Australia to achieve transmission rates at least two thirds lower than those seen in the most severely affected countries. The knownCOVID-19 has been diagnosed in over 4,000 Australians. Up until mid-March, most were from international travel, but now we are seeing a rise in locally acquired cases. The newThis study uses a simple transmission dynamic model to demonstrate the difference between moderate changes to the reproduction number and forcing the reproduction number below one. The implicationsLowering local transmission is becoming important in reducing the transmission of COVID-19. To maintain control of the epidemic, the focus should be on those in the community who do not regard themselves as at risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...