Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798338

RESUMEN

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

2.
Circ Res ; 135(1): 110-134, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38808504

RESUMEN

BACKGROUND: Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS: Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS: Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Perros , Masculino , Recolección de Tejidos y Órganos/efectos adversos , Recolección de Tejidos y Órganos/métodos , Femenino , Transducción de Señal , Perfilación de la Expresión Génica/métodos
3.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961724

RESUMEN

Background: Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods: Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results: Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.

4.
ACS Infect Dis ; 9(4): 943-951, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36926876

RESUMEN

Quaternary ammonium compounds (QACs) serve as a first line of defense against infectious pathogens. As resistance to QACs emerges in the environment, the development of next-generation disinfectants is of utmost priority for human health. Balancing antibacterial potency with environmental considerations is required to effectively counter the development of bacterial resistance. To address this challenge, a series of 14 novel biscationic quaternary phosphonium compounds (bisQPCs) have been prepared as amphiphilic disinfectants through straightforward, high-yielding alkylation reactions. These compounds feature decomposable or "soft" amide moieties in their side chains, anticipated to promote decomposition under environmental conditions. Strong bioactivity against a panel of seven bacterial pathogens was observed, highlighted by single-digit micromolar activity for compounds P6P-12A,12A and P3P-12A,12A. Hydrolysis experiments in pure water and in buffers of varying pH revealed surprising decomposition of the soft QPCs under basic conditions at the phosphonium center, leading to inactive phosphine oxide products; QPC stability (>24 h) was maintained in neutral solutions. The results of this work unveil soft QPCs as a potent and environmentally conscious new class of bisQPC disinfectants.


Asunto(s)
Antiinfecciosos , Desinfectantes , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Antibacterianos/farmacología , Bacterias
5.
ACS Infect Dis ; 9(3): 609-616, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36757826

RESUMEN

Quaternary ammonium compounds (QACs) are vital disinfectants for the neutralization of pathogenic bacteria in clinical, domestic, and commercial settings. After decades of dependence on QACs, the emergence of antimicrobial resistance to this class of compounds threatens the ability of existing QAC products to effectively manage rising bacterial threats. The need for new disinfectants is therefore urgent, with quaternary phosphonium compounds (QPCs) emerging as a new class of promising antimicrobials that boast significant activity against highly resistant bacteria. Reported here is a series of twenty-one novel QPCs that replace phenyl substituents on the phosphorus center with alkyl groups yet allow for rapid synthetic routes in high yields. Within this series are structures containing methyl, ethyl, or cyclohexyl phosphonium substituents on bisphosphane scaffolds bearing ethyl linkers, affording atom economical structures and ones that represent exact analogs to nitrogenous amphiphiles. The resultant bisQPC structures display high antibacterial efficacy enjoyed by comparably constructed QACs, with three structures in the single-digit micromolar activity range despite structural simplification.


Asunto(s)
Antiinfecciosos , Desinfectantes , Desinfectantes/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Bacterias
6.
ChemMedChem ; 18(10): e202300018, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36823400

RESUMEN

Over the past decades, the shortcomings of established quaternary ammonium disinfectants have become increasingly clear. Although benzalkonium chloride (BAC) has enjoyed nearly a century of significantly protecting human health through surgical preparation, home use, and industrial applications, increasing levels of bacterial resistance have rendered it decreasingly effective. In light of more recent efforts that have informed us that multicationic amphiphilic disinfectants show both higher activity as well as diminished susceptibility to resistance, we embarked on the preparation of 27 multicationic QACs in an attempt to clearly document structure-activity relationships of next-generation BAC structures. Select biscationic BAC derivatives demonstrate single-digit micromolar activity against all seven bacteria tested and MIC values of 2- to 32-fold better than BAC. Particularly notable is the improvement against the more concerning bacteria like Acinetobacter baumannii and Pseudomonas aeruginosa, which pose a modern threat to legacy disinfectants like BAC. With simple synthetic paths, consistently high yields (averaging ∼80 %), and strong biological activity, potent structures with clear SAR trends and strong therapeutic indices have been established.


Asunto(s)
Compuestos de Benzalconio , Desinfectantes , Humanos , Compuestos de Benzalconio/farmacología , Desinfectantes/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
7.
ACS Infect Dis ; 8(11): 2307-2314, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36301313

RESUMEN

Acinetobacter baumannii is classified as a highest threat pathogen, urgently necessitating novel antimicrobials that evade resistance to combat its spread. Quaternary ammonium compounds (QACs) have afforded a valuable first line of defense against antimicrobial resistant pathogens as broad-spectrum amphiphilic disinfectant molecules. However, a paucity of innovation in this space has driven the emergence of QAC resistance. Through this work, we sought to identify next-generation disinfectant molecules with efficacy against highly resistant A. baumannii clinical isolates. We selected 12 best-in-class molecules from our previous investigations of quaternary ammonium and quaternary phosphonium compounds (QPCs) to test against a panel of 35 resistant A. baumannii clinical isolates. The results highlighted the efficacy of our next-generation compounds over leading commercial QACs, with our best-in-class QAC (2Pyr-11,11) and QPC (P6P-10,10) displaying improved activities with a few exceptions. Furthermore, we elucidated a correlation between colistin resistance and QAC resistance, wherein the only pan-resistant isolate of the panel, also harboring colistin resistance, exhibited resistance to all tested QACs. Notably, P6P-10,10 maintained efficacy against this strain with an IC90 of 3 µM. In addition, P6P-10,10 displayed minimum biofilm eradication concentrations as low as 32 µM against extensively drug resistant clinical isolates. Lastly, examining the development of disinfectant resistance and cross-resistance, we generated QAC-resistant A. baumannii mutants and observed the development of QAC cross-resistance. In contrast, neither disinfectant resistance nor cross-resistance was observed in A. baumannii under P6P-10,10 treatment. Taken together, the results of this work illustrate the need for novel disinfectant compounds to treat resistant pathogens, such as A. baumannii, and underscore the promise of QPCs, such as P6P-10,10, as viable next-generation disinfectant molecules.


Asunto(s)
Acinetobacter baumannii , Desinfectantes , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Colistina/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Compuestos de Amonio Cuaternario/farmacología
8.
ChemMedChem ; 17(14): e202200224, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35561149

RESUMEN

Biscationic quaternary phosphonium compounds (bisQPCs) represent a promising class of antimicrobials, displaying potent activity against both Gram-negative and Gram-positive bacteria. In this study, we explored the effects of structural rigidity on the antimicrobial activity of QPC structures bearing a two-carbon linker between phosphonium groups, testing against a panel of six bacteria, including multiple strains harboring known disinfectant resistance mechanisms. Using simple alkylation reactions, 21 novel compounds were prepared, although alkene isomerization as well as an alkyne reduction were observed during the respective syntheses. The resulting bisQPC compounds showed strong biological activity, but were hampered by diminished solubility of their iodide salts. One compound (P2P-10,10 I) showed single-digit micromolar activity against the entire panel of bacteria. Overall, intriguing biological activity was observed, with less rigid structures displaying better efficacy against Gram-negative strains and more rigid structures demonstrating slightly increased efficacy against S. aureus strains.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana
9.
ACS Infect Dis ; 8(2): 387-397, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35077149

RESUMEN

Quaternary ammonium compounds (QACs) serve as mainstays in the formulation of disinfectants and antiseptics. However, an over-reliance and misuse of our limited QAC arsenal has driven the development and spread of resistance to these compounds, as well as co-resistance to common antibiotics. Extensive use of these compounds throughout the COVID-19 pandemic thus raises concern for the accelerated proliferation of antimicrobial resistance and demands for next-generation antimicrobials with divergent architectures that may evade resistance. To this end, we endeavored to expand beyond canonical ammonium scaffolds and examine quaternary phosphonium compounds (QPCs). Accordingly, a synthetic and biological investigation into a library of novel QPCs unveiled biscationic QPCs to be effective antimicrobial scaffolds with improved broad-spectrum activities compared to commercial QACs. Notably, a subset of these compounds was found to be less effective against a known QAC-resistant strain of MRSA. Bioinformatic analysis revealed the unique presence of a family of small multiresistant transporter proteins, hypothesized to enable efflux-mediated resistance to QACs and QPCs. Further investigation of this resistance mechanism through efflux-pump inhibition and membrane depolarization assays illustrated the superior ability of P6P-10,10 to perturb the cell membrane and exert the observed broad-spectrum potency compared to its commercial counterparts. Collectively, this work highlights the promise of biscationic phosphonium compounds as next-generation disinfectant molecules with potent bioactivities, thereby laying the foundation for future studies into the synthesis and biological investigation of this nascent antimicrobial class.


Asunto(s)
COVID-19 , Desinfectantes , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...