Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.721
Filtrar
1.
Chemosphere ; 361: 142503, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825242

RESUMEN

There is considerable interest in addressing soils contaminated with per- and polyfluoroalkyl substances (PFAS) because of the PFAS in the environment and associated health risks. The neutralization of PFAS in situ is challenging. Consequently, mobilizing the PFAS from the contaminated soils into an aqueous solution for subsequent handling has been pursued. Nonetheless, the efficiency of mobilization methods for removing PFAS can vary depending on site-specific factors, including the types and concentrations of PFAS compounds, soil characteristics. In the present study, the removal of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from artificially contaminated soils was investigated in a 2D laboratory setup using electrokinetic (EK) remediation and hydraulic flushing by applying a hydraulic gradient (HG) for a duration of 15 days. The percent removal of PFOA by EK was consistent (∼80%) after a 15-day treatment for all soils. The removal efficiency of PFOS by EK significantly varied with the OM content, where the PFOS removal increased from 14% at 5% OM to 60% at 50% OM. With HG, the percent removal increased for both PFOA and PFOS from about 20% at 5% OM up to 80% at 75% OM. Based on the results, the mobilization of PFAS from organic soil would be appropriate using both hydraulic flushing and EK considering their applicability and advantages over each other for site-specific factors and requirements.

2.
Cell Rep ; 43(6): 114296, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823019

RESUMEN

To explore the influence of genetics on homeostatic regulation of dendritic cell (DC) numbers, we present a screen of DCs and their progenitors in lymphoid and non-lymphoid tissues in Collaborative Cross (CC) and Diversity Outbred (DO) mice. We report 30 and 71 loci with logarithm of the odds (LOD) scores >8.18 and ranging from 6.67 to 8.19, respectively. The analysis reveals the highly polygenic and pleiotropic architecture of this complex trait, including many of the previously identified genetic regulators of DC development and maturation. Two SNPs in genes potentially underlying variation in DC homeostasis, a splice variant in Gramd4 (rs235532740) and a missense variant in Orai3 (rs216659754), are confirmed by gene editing using CRISPR-Cas9. Gramd4 is a central regulator of DC homeostasis that impacts the entire DC lineage, and Orai3 regulates cDC2 numbers in tissues. Overall, the data reveal a large number of candidate genes regulating DC homeostasis in vivo.

3.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766244

RESUMEN

The ongoing emergence of SARS-CoV-2 variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized N-terminal domain (NTD) and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from COVID-19 convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-EM structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596's favorable binding profile, we designed a series of bispecific antibodies (bsAbs) termed CoV2-biRNs, that featured both NTD and RBD specificities. Notably, two of the C1596-inclusive bsAbs, CoV2-biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, EG.5.1, and BA.2.86, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 significantly reduced the viral load within the lungs of K18-hACE2 mice following challenge with SARS-CoV-2 XBB.1.5. In conclusion, our NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.

4.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746186

RESUMEN

HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38752734

RESUMEN

INTRODUCTION: Investigations of responses of animals and humans to changes of plasma volume are usually reported as average responses of groups of individuals. This ignores considerable quantitative variation between individuals. We examined the hypothesis that individual responses follow a common temporal pattern with variations reflecting different parameters describing that pattern. METHODS: We illustrate this approach using data of Hahn, Lindahl and Drobin (Acta Anaesthesiol Scand.2011, 55:987-94) who measured urine volume and haemoglobin dilution of 10 female subjects during intravenous Ringer infusions for 30 min and subsequent 3.5 h. The published time courses were digitised and analysed to determine if a family of mathematical functions accounted for the variation in individual responses. RESULTS: Urine excretion was characterised by a time delay (Td) before urine flow increased and a time course of cumulative urine excretion described by a logarithmic function. This logarithmic relation forms the theoretical basis of a family of linear relations describing urine excretion as a function of Td. Measurement of Td enables estimation of subsequent values of urine excretion and thereby the fraction of infused fluid retained in the body. CONCLUSION: The approach might be useful for physiologists and clinical investigators to compare the response to infusion protocols when both test and control responses can be described by linear relations between cumulative urine volume at specific times and Td. The approach may also be useful for clinicians by complementing strategies to guide fluid therapy by enabling the later responses of an individual to be predicted from their earlier response.

6.
Cell Rep ; 43(6): 114298, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38819991

RESUMEN

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.

7.
Parkinsonism Relat Disord ; 124: 107010, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38772265

RESUMEN

PURPOSE: We investigated the contribution of genomic data reanalysis to the diagnostic yield of dystonia patients who remained undiagnosed after prior genome sequencing. METHODS: Probands with heterogeneous dystonia phenotypes who underwent initial genome sequencing (GS) analysis in 2019 were included in the reanalysis, which was performed through gene-specific discovery collaborations and systematic genomic data reanalysis. RESULTS: Initial GS analysis in 2019 (n = 111) identified a molecular diagnosis in 11.7 % (13/111) of cases. Reanalysis between 2020 and 2023 increased the diagnostic yield by 7.2 % (8/111); 3.6 % (4/111) through focused gene-specific clinical correlation collaborative efforts [VPS16 (two probands), AOPEP and POLG], and 3.6 % (4/111) by systematic reanalysis completed in 2023 [NUS1 (two probands) and DDX3X variants, and a microdeletion encompassing VPS16]. Seven of these patients had a high phenotype-based dystonia score ≥3. Notable unverified findings in four additional cases included suspicious variants of uncertain significance in FBXL4 and EIF2AK2, and potential phenotypic expansion associated with SLC2A1 and TREX1 variants. CONCLUSION: GS data reanalysis increased the diagnostic yield from 11.7 % to 18.9 %, with potential extension up to 22.5 %. While optimal timing for diagnostic reanalysis remains to be determined, this study demonstrates that periodic re-interrogation of dystonia GS datasets can provide additional genetic diagnoses, which may have significant implications for patients and their families.

11.
Environ Sci Technol ; 58(14): 6313-6325, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529628

RESUMEN

Urban air quality persists as a global concern, with critical health implications. This study employs a combination of machine learning (gradient boosting regression, GBR) and spatial analysis to better understand the key drivers behind air pollution and its prediction and mitigation strategies. Focusing on New York City as a representative urban area, we investigate the interplay between urban characteristics and weather factors, showing that urban features, including traffic-related parameters and urban morphology, emerge as crucial predictors for pollutants closely associated with vehicular emissions, such as elemental carbon (EC) and nitrogen oxides (NOx). Conversely, pollutants with secondary formation pathways (e.g., PM2.5) or stemming from nontraffic sources (e.g., sulfur dioxide, SO2) are predominantly influenced by meteorological conditions, particularly wind speed and maximum daily temperature. Urban characteristics are shown to act over spatial scales of 500 × 500 m2, which is thus the footprint needed to effectively capture the impact of urban form, fabric, and function. Our spatial predictive model, needing only meteorological and urban inputs, achieves promising results with mean absolute errors ranging from 8 to 32% when using full-year data. Our approach also yields good performance when applied to the temporal mapping of spatial pollutant variability. Our findings highlight the interacting roles of urban characteristics and weather conditions and can inform urban planning, design, and policy.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Tiempo (Meteorología) , Aprendizaje Automático
12.
Artículo en Inglés | MEDLINE | ID: mdl-38429553

RESUMEN

Treatment success for mental health (MH) problems depends, among others, on the timeliness of help-seeking. Therefore, we studied the effect of symptoms and reasons for help-seeking on the point-of-contact and the most intensive professional treatment in a community sample. Participants were recruited as part of the 'Bern Epidemiological At-Risk' (BEAR) study on 16-40-year-old community persons of the Swiss canton Bern. Of the 2,683 participants, 615 (22.9%) reported at least one instance of help-seeking for MH problems and were selected for the presented analyses. Help-seeking behavior was assessed by a modified version of the 'WHO pathway-to-care questionnaire', from which the outcome 'most intensive MH professional contact' was generated. The effect of symptoms and reasons for help-seeking were analyzed in separate models using path analyses. Most help-seeking persons sought MH professional help (n = 405; 65.9%) with a high number of medical pre-contacts (n = 233; 37.9%). The 'most intensive MH professional contact' was provided after an average of 1.47 contacts. Both models showed negative associations between non-MH professional pre-contacts and the most intensive, likely most adequate MH treatment. In the symptom model, 'substance misuse' and 'central-vegetative problems' increased the general likelihood of MH professional contact. Our findings highlight the importance of the first point-of-contact in pathways to adequate MH care and, when seeking help from non-MH professional, of quick referrals to MH professionals. Awareness campaigns or training of health professionals, such as general practitioners, may support timely contact with MH professionals to improve diagnosis, prognosis, and outcome.

13.
Open Forum Infect Dis ; 11(2): ofad673, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38379566

RESUMEN

We evaluated the immunologic response to a novel vaccine regimen that included 2 doses of NVX-CoV2373 (Novavax) followed by 1 dose of BNT162b2 (Pfizer-BioNTech) monovalent booster vaccine. A durable neutralizing antibody response to Omicron BA.4/BA.5 and BA.1 variants was observed at month 6 after the booster, while immune escape was noted for the XBB.1.5 variant.

15.
Mov Disord Clin Pract ; 11(1): 76-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38291835

RESUMEN

BACKGROUND: Variants in dehydrodolichol diphosphate synthetase (DHDDS) and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1) cause a neurodevelopmental disorder, classically with prominent epilepsy. Recent reports suggest a complex movement disorder and an overlapping phenotype has been postulated due to their combined role in dolichol synthesis. CASES: We describe three patients with heterozygous variants in DHDDS and five with variants affecting NUS1. They bear a remarkably similar phenotype of a movement disorder dominated by multifocal myoclonus. Diagnostic clues include myoclonus exacerbated by action and facial involvement, and slowly progressive or stable, gait ataxia with disproportionately impaired tandem gait. Myoclonus is confirmed with neurophysiology, including EMG of facial muscles. LITERATURE REVIEW: Ninety-eight reports of heterozygous variants in DHDDS, NUS1 and chromosome 6q22.1 structural alterations spanning NUS1, confirm the convergent phenotype of hypotonia at birth, developmental delay, multifocal myoclonus, ataxia, dystonia and later parkinsonism with or without generalized epilepsy. Other features include periodic exacerbations, stereotypies, anxiety, and dysmorphisms. Although their gene products contribute to dolichol biosynthesis, a key step in N-glycosylation, transferrin isoform profiles are typically normal. Imaging is normal or non-specific. CONCLUSIONS: Recognition of their shared phenotype may expedite diagnosis through chromosomal microarray and by including DHDDS/NUS1 in movement disorder gene panels.


Asunto(s)
Trastornos del Movimiento , Mioclonía , Recién Nacido , Humanos , Difosfatos , Fenotipo , Ataxia , Dolicoles/metabolismo , Receptores de Superficie Celular
16.
mBio ; 15(2): e0167223, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38193662

RESUMEN

The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. We investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, the removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain and the receptor-binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated S protein and reduced S trafficking to the cell surface. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies cloned from convalescent individuals. The N343 glycan reduced the overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 S glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.IMPORTANCEThe attachment of glycans to the spike proteins of viruses during their synthesis and movement through the secretory pathway can affect their properties. This study shows that the glycans attached to the severe acute respiratory syndrome coronavirus-2 spike protein enable its movement to the cell surface and incorporation into virus particles. Certain glycans, including one that is attached to asparagine 343 in the receptor-binding domain of the spike protein, can also affect virus neutralization by antibodies. This glycan can increase or decrease sensitivity to individual antibodies, likely through direct effects on antibody epitopes and modulation of spike conformation. However, the overall effect of the glycan in the context of the polyclonal mixture of antibodies in convalescent serum is to reduce neutralization sensitivity. Overall, this study highlights the complex effects of glycosylation on spike protein function and immune evasion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Glicosilación , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes , Polisacáridos , Pruebas de Neutralización
17.
Biol Psychiatry ; 95(8): 721-731, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977215

RESUMEN

Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.


Asunto(s)
Aprendizaje , Memoria , Memoria/fisiología , Neuronas/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
18.
J Exp Med ; 221(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938344

RESUMEN

Protective immune responses to many pathogens depend on the development of high-affinity antibody-producing plasma cells (PC) in germinal centers (GCs). Transgenic models suggest that there is a stringent affinity-based barrier to PC development. Whether a similar high-affinity barrier regulates PC development under physiologic circumstances and the nature of the PC fate decision has not been defined precisely. Here, we use a fate-mapping approach to examine the relationship between GC B cells selected to undergo additional rounds of affinity maturation, GC pre-PC, and PC. The data show that initial PC selection overlaps with GC B cell selection, but that the PC compartment accumulates a less diverse and higher affinity collection of antibodies over time. Thus, whereas the GC continues to diversify over time, affinity-based pre-PC selection sieves the GC to enable the accumulation of a more restricted group of high-affinity antibody-secreting PC.


Asunto(s)
Centro Germinal , Células Plasmáticas , Linfocitos B , Anticuerpos , Células Productoras de Anticuerpos
19.
Proc Natl Acad Sci U S A ; 120(51): e2317367120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096415

RESUMEN

Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.


Asunto(s)
Anticuerpos Neutralizantes , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones , Humanos , Anticuerpos Antivirales , Pruebas de Neutralización , Vacunación , Glicoproteína de la Espiga del Coronavirus/química
20.
Nat Commun ; 14(1): 6944, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907454

RESUMEN

Follicular helper T cells (TFH) mediate B cell selection and clonal expansion in germinal centers (GCs), and follicular regulatory T cells (TFR) prevent the emergence of self-reactive B cells and help to extinguish the reaction. Here we show that GC reactions continually recruit T cells from both the naïve conventional and naive thymic regulatory T cell (Treg) repertoires. In the early GC, newly recruited T cells develop into TFH, whereas cells entering during the contraction phase develop into TFR cells that contribute to GC dissolution. The TFR fate decision is associated with decreased antigen availability and is modulated by slow antigen delivery or mRNA vaccination. Thus, invasion of ongoing GCs by newly developing TFH and TFR helps remodel the GC based on antigen availability.


Asunto(s)
Linfocitos T Colaboradores-Inductores , Linfocitos T Reguladores , Centro Germinal , Linfocitos B , Antígenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...