Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31050339

RESUMEN

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.


Asunto(s)
Envejecimiento , Amiloide/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Agregado de Proteínas , Animales
2.
J Biol Chem ; 294(5): 1478-1487, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30504224

RESUMEN

The 42-amino-acid ß-amyloid (Aß42) is a critical causative agent in the pathology of Alzheimer's disease. The hereditary Arctic mutation of Aß42 (E22G) leads to increased intracellular accumulation of ß-amyloid in early-onset Alzheimer's disease. However, it remains largely unknown how the Arctic mutant variant leads to aggressive protein aggregation and increased intracellular toxicity. Here, we constructed stable cell lines expressing fluorescent-tagged wildtype (WT) and E22G Aß42 to study the aggregation kinetics of the Arctic Aß42 mutant peptide and its heterogeneous structural forms. Arctic-mutant peptides assemble and form fibrils at a much faster rate than WT peptides. We identified five categories of intracellular aggregate-oligomers, single fibrils, fibril bundles, clusters, and aggresomes-that underline the heterogeneity of these Aß42 aggregates and represent the progression of Aß42 aggregation within the cell. Fluorescence-lifetime imaging (FLIM) and 3D structural illumination microscopy (SIM) showed that all aggregate species displayed highly compact structures with strong affinity between individual fibrils. We also found that aggregates formed by Arctic mutant Aß42 were more resistant to intracellular degradation than their WT counterparts. Our findings uncover the structural basis of the progression of Arctic mutant Aß42 aggregation in the cell.


Asunto(s)
Péptidos beta-Amiloides/química , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mutación , Imagen Óptica/métodos , Multimerización de Proteína , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/ultraestructura , Humanos , Cinética , Modelos Moleculares , Conformación Proteica
3.
Nat Commun ; 9(1): 712, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459792

RESUMEN

Alpha-synuclein is known to bind to small unilamellar vesicles (SUVs) via its N terminus, which forms an amphipathic alpha-helix upon membrane interaction. Here we show that calcium binds to the C terminus of alpha-synuclein, therewith increasing its lipid-binding capacity. Using CEST-NMR, we reveal that alpha-synuclein interacts with isolated synaptic vesicles with two regions, the N terminus, already known from studies on SUVs, and additionally via its C terminus, which is regulated by the binding of calcium. Indeed, dSTORM on synaptosomes shows that calcium mediates the localization of alpha-synuclein at the pre-synaptic terminal, and an imbalance in calcium or alpha-synuclein can cause synaptic vesicle clustering, as seen ex vivo and in vitro. This study provides a new view on the binding of alpha-synuclein to synaptic vesicles, which might also affect our understanding of synucleinopathies.


Asunto(s)
Calcio/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animales , Sitios de Unión , Línea Celular , Humanos , Técnicas In Vitro , Metabolismo de los Lípidos , Microscopía Electrónica de Transmisión , Resonancia Magnética Nuclear Biomolecular , Terminales Presinápticos/metabolismo , Agregado de Proteínas , Unión Proteica , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , alfa-Sinucleína/ultraestructura
4.
Microsc Res Tech ; 79(8): 677-83, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27324149

RESUMEN

Alzheimer's disease (AD) is the main cause of dementia in the elderly population. Over 30 million people worldwide are living with dementia and AD prevalence is projected to increase dramatically in the next two decades. In terms of neuropathology, AD is characterized by two major cerebral hallmarks: extracellular ß-amyloid (Aß) plaques and intracellular Tau inclusions, which start accumulating in the brain 15-20 years before the onset of symptoms. Within this context, the scientific community worldwide is undertaking a wide research effort to detect AD pathology at its earliest, before symptoms appear. Neuroimaging of Aß by positron emission tomography (PET) is clinically available and is a promising modality for early detection of Aß pathology and AD diagnosis. Substantive efforts are ongoing to develop advanced imaging techniques for early detection of Tau pathology. Here, we will briefly describe the key features of Tau pathology and its heterogeneity across various neurodegenerative diseases bearing cerebral Tau inclusions (i.e., tauopathies). We will outline the current status of research on Tau-specific PET tracers and their clinical development. Finally, we will discuss the potential application of novel super-resolution and label-free techniques for investigating Tau pathology at the experimental level and their potential application for AD diagnosis. Microsc. Res. Tech. 79:677-683, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Enfermedad de Alzheimer , Microscopía , Imagen Molecular , Nanotecnología , Proteínas tau , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Amiloide/ultraestructura , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Proteínas tau/análisis , Proteínas tau/química , Proteínas tau/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(14): 3815-9, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26993805

RESUMEN

New strategies for visualizing self-assembly processes at the nanoscale give deep insights into the molecular origins of disease. An example is the self-assembly of misfolded proteins into amyloid fibrils, which is related to a range of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Here, we probe the links between the mechanism of α-synuclein (AS) aggregation and its associated toxicity by using optical nanoscopy directly in a neuronal cell culture model of Parkinson's disease. Using superresolution microscopy, we show that protein fibrils are taken up by neuronal cells and act as prion-like seeds for elongation reactions that both consume endogenous AS and suppress its de novo aggregation. When AS is internalized in its monomeric form, however, it nucleates and triggers the aggregation of endogenous AS, leading to apoptosis, although there are no detectable cross-reactions between externally added and endogenous protein species. Monomer-induced apoptosis can be reduced by pretreatment with seed fibrils, suggesting that partial consumption of the externally added or excess soluble AS can be significantly neuroprotective.


Asunto(s)
Amiloide/metabolismo , Apoptosis/fisiología , Neuronas/metabolismo , Agregación Patológica de Proteínas/patología , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología , Enfermedad de Alzheimer/patología , Células Cultivadas , Humanos , Enfermedad de Parkinson/patología , Transporte de Proteínas , Deficiencias en la Proteostasis/patología
6.
Neuron ; 88(4): 678-90, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26526393

RESUMEN

The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Caenorhabditis elegans/genética , Degeneración Lobar Frontotemporal/genética , Hidrogeles , Actividad Motora/genética , Transición de Fase , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Animales , Caenorhabditis elegans , Gránulos Citoplasmáticos/metabolismo , Modelos Animales de Enfermedad , Longevidad , Mutación , Proteína FUS de Unión a ARN/química , Ribonucleoproteínas/metabolismo
7.
J Biol Chem ; 289(2): 956-67, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24235150

RESUMEN

Understanding the formation and propagation of aggregates of the Alzheimer disease-associated Tau protein in vivo is vital for the development of therapeutics for this devastating disorder. Using our recently developed live-cell aggregation sensor in neuron-like cells, we demonstrate that different variants of exogenous monomeric Tau, namely full-length Tau (hTau40) and the Tau-derived construct K18 comprising the repeat domain, initially accumulate in endosomal compartments, where they form fibrillar seeds that subsequently induce the aggregation of endogenous Tau. Using superresolution imaging, we confirm that fibrils consisting of endogenous and exogenous Tau are released from cells and demonstrate their potential to spread Tau pathology. Our data indicate a greater pathological risk and potential toxicity than hitherto suspected for extracellular soluble Tau.


Asunto(s)
Endocitosis , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Endosomas/metabolismo , Exocitosis , Espacio Extracelular/metabolismo , Humanos , Lisosomas/metabolismo , Microscopía Confocal , Microscopía Electrónica , Modelos Biológicos , Ovillos Neurofibrilares/ultraestructura , Neuronas/patología , Tauopatías/metabolismo , Vesículas Transportadoras/metabolismo
8.
Methods ; 53(3): 255-66, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21115126

RESUMEN

Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.


Asunto(s)
Deficiencias en la Proteostasis/patología , Serpinas/química , Animales , Animales Modificados Genéticamente , Clonación Molecular/métodos , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Epilepsias Mioclónicas/patología , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Sueros Inmunes , Cuerpos de Inclusión/patología , Espectrometría de Masas/métodos , Mutación Missense , Multimerización de Proteína , Replegamiento Proteico , Deficiencias en la Proteostasis/genética , Serpinas/genética , Serpinas/metabolismo
9.
Hum Mol Genet ; 14(20): 3003-11, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16141285

RESUMEN

We have previously shown that lithium can protect against the polyglutamine toxicity of the Huntington's disease mutation in cell models. Here, we demonstrate for the first time in vivo that lithium can protect against the toxicity caused by aggregate-prone proteins with either polyglutamine or polyalanine expansions in Drosophila. We also show that these protective effects can be partly accounted for by lithium acting through the Wnt/Wg pathway, as a GSK3beta-specific inhibitor and overexpression of dTCF also mediate protective effects. Our data suggest that lithium deserves serious consideration for further studies as a therapeutic for polyglutamine diseases, particularly as it is an established drug that has been used for several decades for chronic treatment of affective disorders.


Asunto(s)
Drosophila/efectos de los fármacos , Litio/farmacología , Péptidos/química , Péptidos/toxicidad , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Litio/uso terapéutico , Péptidos/antagonistas & inhibidores , Péptidos/genética , Inhibidores de Proteínas Quinasas/farmacología , Expansión de Repetición de Trinucleótido/genética , Expansión de Repetición de Trinucleótido/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...