Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geroscience ; 45(4): 2559-2587, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37079217

RESUMEN

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFßR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.


Asunto(s)
Envejecimiento , Senescencia Celular , Humanos , Ratones , Animales , Senescencia Celular/genética , Envejecimiento/genética , Fenotipo , Fibroblastos , Aprendizaje Automático
2.
Cancer Discov ; 12(8): 1873-1885, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35678528

RESUMEN

Defining the complex role of the microbiome in colorectal cancer and the discovery of novel, protumorigenic microbes are areas of active investigation. In the present study, culturing and reassociation experiments revealed that toxigenic strains of Clostridioides difficile drove the tumorigenic phenotype of a subset of colorectal cancer patient-derived mucosal slurries in germ-free ApcMin/+ mice. Tumorigenesis was dependent on the C. difficile toxin TcdB and was associated with induction of Wnt signaling, reactive oxygen species, and protumorigenic mucosal immune responses marked by the infiltration of activated myeloid cells and IL17-producing lymphoid and innate lymphoid cell subsets. These findings suggest that chronic colonization with toxigenic C. difficile is a potential driver of colorectal cancer in patients. SIGNIFICANCE: Colorectal cancer is a leading cause of cancer and cancer-related deaths worldwide, with a multifactorial etiology that likely includes procarcinogenic bacteria. Using human colon cancer specimens, culturing, and murine models, we demonstrate that chronic infection with the enteric pathogen C. difficile is a previously unrecognized contributor to colonic tumorigenesis. See related commentary by Jain and Dudeja, p. 1838. This article is highlighted in the In This Issue feature, p. 1825.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Neoplasias del Colon , Neoplasias Colorrectales , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Carcinogénesis , Clostridioides , Humanos , Inmunidad Innata , Linfocitos/metabolismo , Ratones
3.
Cancer Discov ; 11(7): 1792-1807, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33632774

RESUMEN

Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.


Asunto(s)
Bacteroides fragilis/fisiología , Neoplasias Colorrectales/microbiología , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Mutación
4.
Appl Spectrosc ; 73(9): 1019-1027, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31342767

RESUMEN

Cosmic rays can degrade Raman hyperspectral images by introducing high-intensity noise to spectra, obfuscating the results of downstream analyses. We describe a novel method to detect cosmic rays in deep ultraviolet Raman hyperspectral data sets adapted from existing cosmic ray removal methods applied to astronomical images. This method identifies cosmic rays as outliers in the distribution of intensity values in each wavelength channel. In some cases, this algorithm fails to identify cosmic rays in data sets with high inter-spectral variance, uncorrected baseline drift, or few spectra. However, this method effectively identifies cosmic rays in spatially uncorrelated hyperspectral data sets more effectively than other cosmic ray rejection methods and can potentially be employed in commercial and robotic Raman systems to identify cosmic rays semi-autonomously.

5.
Biotechnol Bioeng ; 116(5): 1220-1230, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30636286

RESUMEN

Intracellular delivery of nucleic acids to mammalian cells using polyplex nanoparticles (NPs) remains a challenge both in vitro and in vivo, with transfections often suffering from variable efficacy. To improve reproducibility and efficacy of transfections in vitro using a next-generation polyplex transfection material poly(beta-amino ester)s (PBAEs), the influence of multiple variables in the preparation of these NPs on their transfection efficacy was explored. The results indicate that even though PBAE/pDNA polyplex NPs are formed by the self-assembly of polyelectrolytes, their transfection is not affected by the manner in which the components are mixed, facilitating self-assembly in a single step, but timing for self-assembly of 5-20 min is optimal. In addition, even though the biomaterials are biodegradable in water, their efficacy is not affected by up to eight freeze-thaw cycles of the polymer. It was found that there is a greater stability of nucleic acid-complexed polymer as a polyplex nanoparticle compared with free polymer. Finally, by exploring multiple buffer systems, it was identified that utilization of divalent cation magnesium or calcium acetate buffers at pH 5.0 is optimal for transfection using these polymeric materials, boosting transfection several folds compared with monovalent cations. Together, these results can improve the reproducibility and efficacy of PBAE and similar polyplex nanoparticle transfections and improve the robustness of using these biomaterials for bioengineering and biotechnology applications.


Asunto(s)
Materiales Biocompatibles/química , ADN/química , Nanopartículas/química , Plásmidos/química , Polímeros/química , Transfección , Animales , Humanos , Concentración de Iones de Hidrógeno
6.
Stem Cells Int ; 2015: 305217, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106425

RESUMEN

Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.

7.
Mol Cell Biochem ; 279(1-2): 97-104, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16283518

RESUMEN

Depleted uranium (DU) is a dense heavy metal used in military applications. During military conflicts, US military personnel have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published data from our laboratory demonstrated that DU exposure in vitro can transform immortalized human osteoblast cells (HOS) to the tumorigenic phenotype. Results from our laboratory have also shown that DU is genotoxic and mutagenic in cultured human cells. Internalized DU could be a carcinogenic risk and concurrent alpha particle and heavy metal toxic effects complicate this potential risk. Anecdotal reports have suggested that DU can cause leukemia. To better assess this risk, we have developed an in vivo leukemogenesis model. This model involves using murine hematopoietic cells (FDC-P1) that are dependent on stimulation by granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) and injected into mice to produce myeloid leukemia. Although immortalized, these cells are not tumorigenic on subcutaneous inoculation in mice. Intravenous injection of FDC-P1 cells into DU-implanted DBA/2 mice was followed by the development of leukemias in 76% of all mice implanted with DU pellets. In contrast, only 12% of control mice developed leukemia. Karyotypic analysis confirmed that the leukemias originated from FDC-P1 cells. The growth properties of leukemic cells from bone marrow, spleen, and lymph node were assessed and indicate that the FDC-P1 cells had become transformed in vivo. The kidney, spleen, bone marrow, muscle, and urine showed significant elevations in tissue uranium levels prior to induction of leukemia. These results demonstrated that a DU altered in vivo environment may be involved in the pathogenesis of DU induced leukemia in an animal model.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/inducido químicamente , Células Madre Hematopoyéticas/efectos de los fármacos , Leucemia Experimental/inducido químicamente , Uranio/toxicidad , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Cariotipificación , Leucemia Experimental/genética , Leucemia Experimental/patología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Endogámicos DBA , Modelos Animales , Células Progenitoras Mieloides/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Células Tumorales Cultivadas , Uranio/administración & dosificación , Irradiación Corporal Total
8.
J Biol Chem ; 277(52): 50491-6, 2002 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-12401785

RESUMEN

We investigated the roles of hydrophobic deoxycholic acid (DCA) and hydrophilic ursocholic acid (UCA) in the regulation of the orphan nuclear farnesoid X receptor (FXR) in vivo. Rabbits with bile fistula drainage (removal of the endogenous bile acid pool), rabbits with bile fistula drainage and replacement with either DCA or UCA, and intact rabbits fed 0.5% cholic acid (CA) (enlarged endogenous bile acid pool) were studied. After bile fistula drainage, cholesterol 7alpha-hydroxylase (CYP7A1) mRNA and activity levels increased, FXR-mediated transcription was decreased, and FXR mRNA and nuclear protein levels declined. Replacing the enterohepatic bile acid pool with DCA restored FXR mRNA and nuclear protein levels and activated FXR-mediated transcription as evidenced by the increased expression of its target genes, SHP and BSEP, and decreased CYP7A1 mRNA level and activity. Replacing the bile acid pool with UCA also restored FXR mRNA and nuclear protein levels but did not activate FXR-mediated transcription, because the SHP mRNA level and CYP7A1 mRNA level and activity were unchanged. Feeding CA to intact rabbits expanded the bile acid pool enriched with the FXR high affinity ligand, DCA. FXR-mediated transcription became activated as shown by increased SHP and BSEP mRNA levels and decreased CYP7A1 mRNA level and activity but did not change FXR mRNA or nuclear protein levels. Thus, both hydrophobic and hydrophilic bile acids are effective in maintaining FXR mRNA and nuclear protein levels. However, the activating ligand (DCA) in the enterohepatic flux is necessary for FXR-mediated transcriptional regulation, which leads to down-regulation of CYP7A1.


Asunto(s)
Ácidos y Sales Biliares/fisiología , Ácidos Cólicos/fisiología , Proteínas de Unión al ADN/fisiología , Ácido Desoxicólico/fisiología , Factores de Transcripción/fisiología , Animales , Enfermedades de los Conductos Biliares/fisiopatología , Conductos Biliares/fisiología , Colesterol 7-alfa-Hidroxilasa/genética , Ciclofilinas/farmacología , Fístula , Homeostasis , Masculino , ARN Mensajero/genética , Conejos , Receptores Citoplasmáticos y Nucleares , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...