Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
mSystems ; 8(6): e0084123, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37882535

RESUMEN

IMPORTANCE: The food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.


Asunto(s)
Kluyveromyces , Probióticos , Candida , Inflamación , Probióticos/uso terapéutico
2.
Front Med (Lausanne) ; 10: 1087715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601783

RESUMEN

Introduction: Antibiotic effects on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the mycobiota, the fungal part of the microbiota and how the length of administration influences both microbiota. Here, we examined the effect of antibiotics (ATB) on the composition of bacterial and fungal microbiota and how the administration of Saccharomyces boulardii CNCM I-745 influences both microbiota. Methods: In order to get closer to the human microbiota, the mice used in this study were subjected to fecal microbiota transfer (FMT) using human feces and subsequently called human microbiotaassociated (HMA) mice. These mice were then treated with amoxicillinclavulanate antibiotics and supplemented with S. boulardii during and after ATB treatment to understand the effect of the yeast probiotic on both bacterial and fungal microbiota. Bacterial and fungal microbiota analyses were done using 16S and ITS2 rRNA amplicon-based sequencing. Results: We showed that the administration of S. boulardii during ATB treatment had very limited effect on the fungal populations on the long term, once the yeast probiotic has been cleared from the gut. Concerning bacterial microbiota, S. boulardii administration allowed a better recovery of bacterial populations after the end of the ATB treatment period. Additionally, 16S and ITS2 rRNA sequence analysis revealed that 7 additional days of S. boulardii administration (17 days in total) enhanced the return of the initial bacterial equilibrium. Discussion: In this study, we provide a comprehensive analysis of how probiotic yeast administration can influence the fungal and bacterial microbiota in a model of broad-spectrum antibiotherapy.

3.
Front Immunol ; 14: 1098160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304256

RESUMEN

Introduction: Staphylococcus epidermidis is a commensal bacterium ubiquitously present on human skin. This species is considered as a key member of the healthy skin microbiota, involved in the defense against pathogens, modulating the immune system, and involved in wound repair. Simultaneously, S. epidermidis is the second cause of nosocomial infections and an overgrowth of S. epidermidis has been described in skin disorders such as atopic dermatitis. Diverse isolates of S. epidermidis co-exist on the skin. Elucidating the genetic and phenotypic specificities of these species in skin health and disease is key to better understand their role in various skin conditions. Additionally, the exact mechanisms by which commensals interact with host cells is partially understood. We hypothesized that S. epidermidis isolates identified from different skin origins could play distinct roles on skin differentiation and that these effects could be mediated by the aryl hydrocarbon receptor (AhR) pathway. Methods: For this purpose, a library of 12 strains originated from healthy skin (non-hyperseborrheic (NH) and hyperseborrheic (H) skin types) and disease skin (atopic (AD) skin type) was characterized at the genomic and phenotypic levels. Results and discussion: Here we showed that strains from atopic lesional skin alter the epidermis structure of a 3D reconstructed skin model whereas strains from NH healthy skin do not. All strains from NH healthy skin induced AhR/OVOL1 path and produced high quantities of indole metabolites in co-culture with NHEK; especially indole-3-aldehyde (IAld) and indole-3-lactic acid (ILA); while AD strains did not induce AhR/OVOL1 path but its inhibitor STAT6 and produced the lowest levels of indoles as compared to the other strains. As a consequence, strains from AD skin altered the differentiation markers FLG and DSG1. The results presented here, on a library of 12 strains, showed that S. epidermidis originated from NH healthy skin and atopic skin have opposite effects on the epidermal cohesion and structure and that these differences could be linked to their capacity to produce metabolites, which in turn could activate AHR pathway. Our results on a specific library of strains provide new insights into how S. epidermidis may interact with the skin to promote health or disease.


Asunto(s)
Dermatitis Atópica , Staphylococcus epidermidis , Humanos , Promoción de la Salud , Receptores de Hidrocarburo de Aril , Piel
4.
Microbiome ; 11(1): 73, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032359

RESUMEN

BACKGROUND: Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota. DESIGN: We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota. Bacterial and fungal communities were subjected to qPCR or 16S and ITS2 amplicon-based sequencing for microbiota analysis. In vitro assays further characterized bacterial-fungal interactions, with mixed cultures between specific bacteria and fungi. RESULTS: Amoxicillin-clavulanic acid treatment triggered a decrease in the total fungal population in mouse feces, while other antibiotics had opposite effects on the fungal load. This decrease is accompanied by a total remodelling of the fungal population with the enrichment in Aspergillus, Cladosporium, and Valsa genera. In the presence of amoxicillin-clavulanic acid, microbiota analysis showed a remodeling of bacterial microbiota with an increase in specific bacteria belonging to the Enterobacteriaceae. Using in vitro assays, we isolated different Enterobacteriaceae species and explored their effect on different fungal strains. We showed that Enterobacter hormaechei was able to reduce the fungal population in vitro and in vivo through yet unknown mechanisms. CONCLUSIONS: Bacteria and fungi have strong interactions within the microbiota; hence, the perturbation initiated by an antibiotic treatment targeting the bacterial community can have complex consequences and can induce opposite alterations of the mycobiota. Interestingly, amoxicillin-clavulanic acid treatment has a deleterious effect on the fungal community, which may have been partially due to the overgrowth of specific bacterial strains with inhibiting or competing effects on fungi. This study provides new insights into the interactions between fungi and bacteria of the intestinal microbiota and might offer new strategies to modulate gut microbiota equilibrium. Video Abstract.


Asunto(s)
Combinación Amoxicilina-Clavulanato de Potasio , Microbiota , Humanos , Ratones , Animales , Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Antibacterianos/farmacología , Tracto Gastrointestinal/microbiología , Hongos , Bacterias/genética
5.
Gut ; 72(7): 1296-1307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270778

RESUMEN

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Triptófano/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Intestinos , Inflamación
6.
Gut ; 72(6): 1081-1092, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36167663

RESUMEN

OBJECTIVES: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Neutrófilos/metabolismo , Supervivencia Celular , Colitis/inducido químicamente , Colitis/prevención & control , Inflamación/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo
7.
Cell Host Microbe ; 30(10): 1349-1351, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228583

RESUMEN

In a recent Science issue, Bousbaine et al. (2022) identified ß-N-acetylhexosaminidase, a conserved antigen expressed by commensals that drives expansion and differentiation of intestinal intra-epithelial cells and protects against gut inflammation.


Asunto(s)
Simbiosis , beta-N-Acetilhexosaminidasas , Intestinos
8.
J Fungi (Basel) ; 8(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36135618

RESUMEN

Food processes use different microorganisms, from bacteria to fungi. Yeast strains have been extensively studied, especially Saccharomyces cerevisiae. However, to date, very little is known about the potential beneficial effects of molds on gut health as part of gut microbiota. We undertook a comprehensive characterization of five mold strains, Penicillium camemberti, P. nalgiovense, P. roqueforti, Fusarium domesticum, and Geotrichum candidum used in food processes, on their ability to trigger or protect intestinal inflammation using in vitro human cell models and in vivo susceptibility to sodium dextran sulfate-induced colitis. Comparison of spore adhesion to epithelial cells showed a very wide disparity in results, with F. domesticum and P. roqueforti being the two extremes, with almost no adhesion and 20% adhesion, respectively. Interaction with human immune cells showed mild pro-inflammatory properties of all Penicillium strains and no effect of the others. However, the potential anti-inflammatory abilities detected for G. candidum in vitro were not confirmed in vivo after oral gavage to mice before and during induced colitis. According to the different series of experiments carried out in this study, the impact of the spores of these molds used in food production is limited, with no specific beneficial or harmful effect on the gut.

9.
Microbiome ; 10(1): 91, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35698210

RESUMEN

BACKGROUND: Innate immunity genes have been reported to affect susceptibility to inflammatory bowel diseases (IBDs) and colitis in mice. Dectin-1, a receptor for fungal cell wall ß-glucans, has been clearly implicated in gut microbiota modulation and modification of the susceptibility to gut inflammation. Here, we explored the role of Dectin-1 and Dectin-2 (another receptor for fungal cell wall molecules) deficiency in intestinal inflammation. DESIGN: Susceptibility to dextran sodium sulfate (DSS)-induced colitis was assessed in wild-type, Dectin-1 knockout (KO), Dectin-2KO, and double Dectin-1KO and Dectin-2KO (D-1/2KO) mice. Inflammation severity, as well as bacterial and fungal microbiota compositions, was monitored. RESULTS: While deletion of Dectin-1 or Dectin-2 did not have a strong effect on DSS-induced colitis, double deletion of Dectin-1 and Dectin-2 significantly protected the mice from colitis. The protection was largely mediated by the gut microbiota, as demonstrated by fecal transfer experiments. Treatment of D-1/2KO mice with opportunistic fungal pathogens or antifungal agents did not affect the protection against gut inflammation, suggesting that the fungal microbiota had no role in the protective phenotype. Amplicon-based microbiota analysis of the fecal bacterial and fungal microbiota of D-1/2KO mice confirmed the absence of changes in the mycobiota but strong modification of the bacterial microbiota. We showed that bacteria from the Lachnospiraceae family were at least partly involved in this protection and that treatment with Blautia hansenii was enough to recapitulate the protection. CONCLUSIONS: Deletion of both the Dectin-1 and Dectin-2 receptors triggered a global shift in the microbial gut environment, affecting, surprisingly, mainly the bacterial population and driving protective effects in colitis. Members of the Lachnospiraceae family seem to play a central role in this protection. These findings provide new insights into the role of the Dectin receptors, which have been described to date as affecting only the fungal population, in intestinal physiopathology and in IBD. Video Abstract.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Micobioma , Animales , Bacterias/genética , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Inflamación , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL
10.
Nutrients ; 14(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215440

RESUMEN

Symptom occurrence at the first ingestion suggests that food allergy may result from earlier sensitization via non-oral routes. We aimed to characterize the cellular populations recruited at various mucosal and immune sites after experimental sensitization though different routes. BALB/cJ mice were exposed to a major allergenic food (peanut) mixed with cholera toxin via the intra-gastric (i.g.), respiratory, cutaneous, or intra-peritoneal (i.p.) route. We assessed sensitization and elicitation of the allergic reaction and frequencies of T cells, innate lymphoid cells (ILC), and inflammatory and dendritic cells (DC) in broncho-alveolar lavages (BAL), lungs, skin, intestine, and various lymph nodes. All cellular data were analyzed through non-supervised and supervised uni/multivariate analysis. All exposure routes, except cutaneous, induced sensitization, but intestinal allergy was induced only in i.g.- and i.p.-exposed mice. Multivariate analysis of all cellular constituents did not discriminate i.g. from control mice. Conversely, respiratory-sensitized mice constituted a distinct cluster, characterized by high local inflammation and immune cells recruitment. Those mice also evidenced changes in ILC frequencies at distant site (intestine). Despite absence of sensitization, cutaneous-exposed mice evidenced comparable changes, albeit less intense. Our study highlights that the initial route of sensitization to a food allergen influences the nature of the immune responses at various mucosal sites. Interconnections of mucosal immune systems may participate in the complexity of clinical manifestations as well as in the atopic march.


Asunto(s)
Arachis , Hipersensibilidad a los Alimentos , Alérgenos , Animales , Modelos Animales de Enfermedad , Inmunidad Innata , Linfocitos , Ratones , Ratones Endogámicos BALB C
11.
Cell Rep ; 36(1): 109332, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233192

RESUMEN

Gut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells. Treatment with vancomycin, a Gram-positive bacterium-targeting antibiotic, leads to decreased production of short-chain fatty acids (SCFAs) by the gut microbiota. Our data reveal that these microbiota-derived metabolites, particularly propionate, reduce IL-17 and IL-22 production by intestinal γδ T cells. Propionate acts directly on γδ T cells to inhibit their production of IL-17 in a histone deacetylase-dependent manner. Moreover, the production of IL-17 by human IL-17-producing γδ T cells from patients with inflammatory bowel disease (IBD) is regulated by propionate. These data contribute to a better understanding of the mechanisms regulating gut γδ T cell functions and offer therapeutic perspectives of these cells.


Asunto(s)
Ácidos Grasos Volátiles/farmacología , Microbioma Gastrointestinal , Interleucina-17/biosíntesis , Intestinos/citología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Adulto , Animales , Ciego/citología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Interleucinas/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Vancomicina/farmacología , Interleucina-22
12.
Environ Microbiol ; 21(11): 4020-4031, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31325218

RESUMEN

Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe-driven inflammation. Pancreatitis-associated protein (PAP) belongs to Regenerating islet-derived III proteins family and is a C-type (Ca+2 dependent) lectin. PAP protein plays a protective effect presenting anti-inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL-PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro-benzenesulfonic-acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL-PAP presented less severe colitis compared with PBS and LL-empty-treated mice groups. After the DSS challenge, no protective effects of LL-PAP could be detected. We determined that after 5 days administration, LL-PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL-PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL-PAP in DNBS colitis model might be through intestinal microbiota modulation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/uso terapéutico , Colitis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Lactococcus lactis/metabolismo , Proteínas Asociadas a Pancreatitis/uso terapéutico , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Bencenosulfonatos/toxicidad , Colitis/inducido químicamente , Colitis/patología , Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Pancreatitis/metabolismo , Péptidos/metabolismo
13.
Microbiome ; 6(1): 152, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172257

RESUMEN

BACKGROUND: Host-microbe balance maintains intestinal homeostasis and strongly influences inflammatory conditions such as inflammatory bowel diseases (IBD). Here we focused on bacteria-fungi interactions and their implications on intestinal inflammation, a poorly understood area. METHODS: Dextran sodium sulfate (DSS)-induced colitis was assessed in mice treated with vancomycin (targeting gram-positive bacteria) or colistin (targeting Enterobacteriaceae) and supplemented with either Saccharomyces boulardii CNCM I-745 or Candida albicans. Inflammation severity as well as bacterial and fungal microbiota compositions was monitored. RESULTS: While S. boulardii improved DSS-induced colitis and C. albicans worsened it in untreated settings, antibiotic treatment strongly modified DSS susceptibility and effects of fungi on colitis. Vancomycin-treated mice were fully protected from colitis, while colistin-treated mice retained colitis phenotype but were not affected anymore by administration of fungi. Antibacterial treatments not only influenced bacterial populations but also had indirect effects on fungal microbiota. Correlations between bacterial and fungal relative abundance were dramatically decreased in colistin-treated mice compared to vancomycin-treated and control mice, suggesting that colistin-sensitive bacteria are involved in interactions with fungi. Restoration of the Enterobacteriaceae population by administrating colistin-resistant Escherichia coli reestablished both beneficial effects of S. boulardii and pathogenic effects of C. albicans on colitis severity. This effect was at least partly mediated by an improved gut colonization by fungi. CONCLUSIONS: Fungal colonization of the gut is affected by the Enterobacteriaceae population, indirectly modifying effects of mycobiome on the host. This finding provides new insights into the role of inter-kingdom functional interactions in intestinal physiopathology and potentially in IBD.


Asunto(s)
Candida albicans/fisiología , Colitis/microbiología , Enterobacteriaceae/fisiología , Saccharomyces boulardii/fisiología , Animales , Antibiosis , Anticuerpos/administración & dosificación , Candida albicans/genética , Candida albicans/aislamiento & purificación , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Femenino , Microbioma Gastrointestinal , Humanos , Ratones , Ratones Endogámicos C57BL , Saccharomyces boulardii/genética , Saccharomyces boulardii/aislamiento & purificación
14.
Cell Metab ; 28(5): 737-749.e4, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30057068

RESUMEN

The extent to which microbiota alterations define or influence the outcome of metabolic diseases is still unclear, but the byproducts of microbiota metabolism are known to have an important role in mediating the host-microbiota interaction. Here, we identify that in both pre-clinical and clinical settings, metabolic syndrome is associated with the reduced capacity of the microbiota to metabolize tryptophan into derivatives that are able to activate the aryl hydrocarbon receptor. This alteration is not merely an effect of the disease as supplementation with AhR agonist or a Lactobacillus strain, with a high AhR ligand-production capacity, leads to improvement of both dietary- and genetic-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis, through improvement of intestinal barrier function and secretion of the incretin hormone GLP-1. These results highlight the role of gut microbiota-derived metabolites as a biomarker and as a basis for novel preventative or therapeutic interventions for metabolic disorders.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Animales , Limosilactobacillus reuteri/metabolismo , Ligandos , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/terapia , Ratones , Ratones Endogámicos C57BL , Probióticos/uso terapéutico , Receptores de Hidrocarburo de Aril/agonistas
15.
Nat Commun ; 9(1): 2802, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022049

RESUMEN

Dietary lipids favor the growth of the pathobiont Bilophila wadsworthia, but the relevance of this expansion in metabolic syndrome pathogenesis is poorly understood. Here, we showed that B. wadsworthia synergizes with high fat diet (HFD) to promote higher inflammation, intestinal barrier dysfunction and bile acid dysmetabolism, leading to higher glucose dysmetabolism and hepatic steatosis. Host-microbiota transcriptomics analysis reveal pathways, particularly butanoate metabolism, which may underlie the metabolic effects mediated by B. wadsworthia. Pharmacological suppression of B. wadsworthia-associated inflammation demonstrate the bacterium's intrinsic capacity to induce a negative impact on glycemic control and hepatic function. Administration of the probiotic Lactobacillus rhamnosus CNCM I-3690 limits B. wadsworthia-induced immune and metabolic impairment by limiting its expansion, reducing inflammation and reinforcing intestinal barrier. Our results suggest a new avenue for interventions against western diet-driven inflammatory and metabolic diseases.


Asunto(s)
Bilophila/patogenicidad , Infecciones por Desulfovibrionaceae/microbiología , Grasas de la Dieta/efectos adversos , Hígado Graso/microbiología , Lacticaseibacillus rhamnosus/fisiología , Síndrome Metabólico/microbiología , Probióticos/farmacología , Animales , Bilophila/crecimiento & desarrollo , Glucemia/metabolismo , Citocinas/biosíntesis , Citocinas/genética , Infecciones por Desulfovibrionaceae/etiología , Infecciones por Desulfovibrionaceae/metabolismo , Infecciones por Desulfovibrionaceae/terapia , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/terapia , Microbioma Gastrointestinal , Hígado/microbiología , Hígado/patología , Pruebas de Función Hepática , Masculino , Redes y Vías Metabólicas/genética , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/terapia , Ratones , Ratones Endogámicos C57BL , Transcriptoma
16.
Front Microbiol ; 9: 3281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687269

RESUMEN

We have recently described antitumor properties of Lactobacillus casei BL23 strain in both a mouse allograft model of human papilloma virus (HPV)-induced cancer and dimethylhydrazine-associated colorectal cancer. However, the mechanisms underlying these beneficial effects are still unknown. Interestingly, in vitro cellular models show that this bacterium is able to stimulate the production of high levels of IL-2. Because this cytokine has well-known antitumor properties, we decided to explore its role in the anti-cancer effects of BL23 using the HPV-induced cancer model. We found a negative correlation between IL-2 and tumor size confirming the necessity of IL-2 to protect from tumor development. Then, we blocked IL-2 synthesis using neutralizing monoclonal antibodies in mice that were challenged with lethal levels of tumor cells; this led to a significant reduction in the protective abilities of BL23. Next, we used a genetically modified strain of Lactococcus lactis to deliver exogenous IL-2 to the system, and in doing so, we were able to partially mimic the antitumor properties of BL23. Additionally, we showed the systemic role of T-cells in tumor protection through a negative correlation between tumor size and T-cells subpopulations and an increasement of BL23-specific local Foxp3 levels in tumor-bearing mice. Finally, we observed a negative correlation between tumor size and NK+ cells, but local recruitment of NK cells and cytotoxic activity appeared specific to BL23 treatment. Taken together, our data suggest that IL-2 signaling pathway plays an important role in the anti-tumoral effects of probiotic strain L. casei BL23. These results encourage further investigation in the use of probiotic strains for potential therapeutic applications to clinical practice, in particular for the treatment of colorectal cancer. Furthermore, our approach could be extended and applied to other potential beneficial microorganisms, such as gut microbiota, in order to better understand the crosstalk between microbes and the host.

17.
Gut ; 67(10): 1836-1844, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28790160

RESUMEN

OBJECTIVE: In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 (CARD9), a key innate immunity gene, is required to shape a normal gut microbiota. Card9-/- mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli. Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. DESIGN: C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9-/- mice. To explore the impact of Card9-/-microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9-/- (Card9-/- →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota-host immune system interactions were assessed by quantitative PCR analysis. RESULTS: CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium-induced colitis was observed in Card9-/- →GF mice. The microbiota of Card9-/- mice failed to outcompete the monosaccharide-consuming C. rodentium, worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9-/- mice. CONCLUSIONS: CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Colitis , Microbioma Gastrointestinal/fisiología , Polisacáridos , Inmunidad Adaptativa/fisiología , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Citrobacter rodentium/efectos de los fármacos , Citrobacter rodentium/patogenicidad , Colitis/inmunología , Colitis/microbiología , Dietoterapia/métodos , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/fisiología , Ratones , Polisacáridos/efectos adversos , Polisacáridos/metabolismo , Virulencia/fisiología
18.
Eur J Immunol ; 46(9): 2162-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338553

RESUMEN

Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.


Asunto(s)
Diferenciación Celular/inmunología , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/metabolismo , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Animales , Biomarcadores , Células Cultivadas , Inmunofenotipificación , Interleucina-17/biosíntesis , Interleucina-4/biosíntesis , Ratones , Ratones Noqueados , Ratones Transgénicos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fenotipo , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/deficiencia , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/genética
19.
Nat Med ; 22(6): 598-605, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27158904

RESUMEN

Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9(-/-) mice are more susceptible to colitis. The microbiota is altered in Card9(-/-) mice, and transfer of the microbiota from Card9(-/-) to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9(-/-) mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Colitis/inmunología , Microbioma Gastrointestinal/inmunología , Interleucinas/inmunología , Lactobacillus/metabolismo , Receptores de Hidrocarburo de Aril/inmunología , Triptófano/metabolismo , Adolescente , Adulto , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Cromatografía Líquida de Alta Presión , Colitis/inducido químicamente , Colitis/patología , Colon/inmunología , Colon/microbiología , Colon/patología , Citocinas/inmunología , Sulfato de Dextran/toxicidad , Trasplante de Microbiota Fecal , Femenino , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triptófano/inmunología , Adulto Joven , Interleucina-22
20.
Nat Med ; 20(10): 1206-10, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25242415

RESUMEN

In spite of their precipitous encounter with the environment, newborn infants cannot readily mount T helper type 1 (TH1) cell antibacterial and antiviral responses. Instead, they show skewing toward TH2 responses, which, together with immunoregulatory functions, are thought to limit the potential for inflammatory damage, while simultaneously permitting intestinal colonization by commensals. However, these collective capabilities account for relatively few T cells. Here we demonstrate that a major T cell effector function in human newborns is interleukin-8 (CXCL8) production, which has the potential to activate antimicrobial neutrophils and γδ T cells. CXCL8 production was provoked by antigen receptor engagement of T cells that are distinct from those few cells producing TH1, TH2 and TH17 cytokines, was co-stimulated by Toll-like receptor signaling, and was readily apparent in preterm babies, particularly those experiencing neonatal infections and severe pathology. By contrast, CXCL8-producing T cells were rare in adults, and no equivalent function was evident in neonatal mice. CXCL8 production counters the widely held view that T lymphocytes in very early life are intrinsically anti-inflammatory, with implications for immune monitoring, immune interventions (including vaccination) and immunopathologies. It also emphasizes qualitative distinctions between infants' and adults' immune systems.


Asunto(s)
Recién Nacido/inmunología , Interleucina-8/biosíntesis , Subgrupos de Linfocitos T/inmunología , Adulto , Animales , Animales Recién Nacidos , Citocinas/biosíntesis , Citocinas/sangre , Femenino , Sangre Fetal/inmunología , Humanos , Recién Nacido/sangre , Recien Nacido Prematuro/sangre , Recien Nacido Prematuro/inmunología , Interleucina-8/sangre , Interleucina-8/genética , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...