Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 4(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811064

RESUMEN

DNA double-strand breaks can be repaired by non-homologous end-joining or homologous recombination. Which pathway is used depends on the balance between the tumor suppressors 53BP1 and BRCA1 and on the availability of an undamaged template DNA for homology-directed repair. How cells switch from a 53BP1-dominated to a BRCA1-governed homologous recombination response as they progress through the cell cycle is incompletely understood. Here we reveal, using high-throughput microscopy and applying single cell normalization to control for increased genome size as cells replicate their DNA, that 53BP1 recruitment to damaged replicated chromatin is inefficient in both BRCA1-proficient and BRCA1-deficient cells. Our results substantiate a dual switch model from a 53BP1-dominated response in unreplicated chromatin to a BRCA1-BARD1-dominated response in replicated chromatin, in which replication-coupled dilution of 53BP1's binding mark H4K20me2 functionally cooperates with BRCA1-BARD1-mediated suppression of 53BP1 binding. More generally, we suggest that appropriate normalization of single cell data, for example, to DNA content, provides additional layers of information, which can be critical for quantifying and interpreting cellular phenotypes.


Asunto(s)
Proteína BRCA1/genética , Reparación del ADN/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cromatina/genética , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Genes BRCA1 , Células HeLa , Histonas/metabolismo , Recombinación Homóloga/genética , Humanos , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
J Cell Biol ; 218(9): 2865-2875, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31366665

RESUMEN

The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Inestabilidad Genómica , Proteolisis , Puntos de Control de la Fase S del Ciclo Celular , Ubiquitinación , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Estabilidad de Enzimas/genética , Células HeLa , Humanos
3.
EMBO J ; 38(16): e101379, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31267591

RESUMEN

The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.


Asunto(s)
Reparación del ADN , Extracción Líquido-Líquido/métodos , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Perros , Histonas/metabolismo , Humanos , Células MCF-7 , Células de Riñón Canino Madin Darby , Optogenética , Presión Osmótica , Estrés Fisiológico , Proteína 1 de Unión al Supresor Tumoral P53/genética
4.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30639241

RESUMEN

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Asunto(s)
Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , División del ARN , Precursores del ARN/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Poliadenilación , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas de Unión al ARN
5.
Nat Commun ; 9(1): 2678, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992957

RESUMEN

Exploiting the full potential of anti-cancer drugs necessitates a detailed understanding of their cytotoxic effects. While standard omics approaches are limited to cell population averages, emerging single cell techniques currently lack throughput and are not applicable for compound screens. Here, we employed a versatile and sensitive high-content microscopy-based approach to overcome these limitations and quantify multiple parameters of cytotoxicity at the single cell level and in a cell cycle resolved manner. Applied to PARP inhibitors (PARPi) this approach revealed an S-phase-specific DNA damage response after only 15 min, quantitatively differentiated responses to several clinically important PARPi, allowed for cell cycle resolved analyses of PARP trapping, and predicted conditions of PARPi hypersensitivity and resistance. The approach illuminates cellular mechanisms of drug synergism and, through a targeted multivariate screen, could identify a functional interaction between PARPi olaparib and NEDD8/SCF inhibition, which we show is dependent on PARP1 and linked to PARP1 trapping.


Asunto(s)
Resistencia a Medicamentos/efectos de los fármacos , Microscopía Fluorescente/métodos , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Daño del ADN , Reparación del ADN , Resistencia a Medicamentos/genética , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Interferencia de ARN , Imagen de Lapso de Tiempo/métodos
6.
Methods Mol Biol ; 1608: 57-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695503

RESUMEN

Formation of poly(ADP-ribose) (PAR) marks intracellular stress signaling and is notably induced upon DNA damage. PAR polymerases (PARPs) catalyze PAR synthesis upon genotoxic stress and thereby recruit multiple proteins to damaged chromatin. PAR induction is transient and antagonized by the action of PAR glycohydrolase (PARG). Given that poly(ADP-ribosyl)ation (PARylation) is involved in genome integrity maintenance and other vital cellular functions, but also in light of the recent approval of PARP inhibitors for cancer treatments, reliable measurements of intracellular PAR formation have gained importance. Here we provide a detailed protocol for PAR measurements by quantitative image-based cytometry. This technique combines the high spatial resolution of single-cell microscopy with the advantages of cell population measurements through automated high-content imaging. Such upscaling of immunofluorescence-based PAR detection not only increases the robustness of the measurements through averaging across large cell populations but also allows for the discrimination of subpopulations and thus enables multivariate measurements of PAR levels and DNA damage signaling. We illustrate how this technique can be used to assess the dynamics of the cellular response to oxidative damage as well as to PARP inhibitor-induced genotoxicity in a cell cycle resolved manner. Due to the possibility to use any automated microscope for quantitative image-based cytometry, the presented method has widespread applicability in the area of PARP biology and beyond.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN/fisiología , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Daño del ADN/genética , Humanos , Citometría de Imagen , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Cell Rep ; 19(9): 1819-1831, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28564601

RESUMEN

The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understood. Here, we show that the ability of 53BP1 to accumulate around DSBs declines as cells progress through S phase and reveal that the inverse relationship between 53BP1 recruitment and replicated chromatin is linked to the replication-coupled dilution of 53BP1's target mark H4K20me2. Consistently, premature maturation of post-replicative chromatin restores H4K20me2 and rescues 53BP1 accumulation on replicated chromatin. The H4K20me2-mediated chromatin association of 53BP1 thus represents an inbuilt mechanism to distinguish DSBs in pre- versus post-replicative chromatin, allowing for localized repair pathway choice decisions based on the availability of replication-generated template strands for HDR.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN , Histonas/metabolismo , Lisina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Humanos , Modelos Biológicos , Reparación del ADN por Recombinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...