Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leukemia ; 36(6): 1516-1524, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35468945

RESUMEN

Inotuzumab Ozogamicin is a CD22-directed antibody conjugated to calicheamicin, approved in adults with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (BCP-ALL). Patients aged 1-18 years, with R/R CD22 + BCP-ALL were treated at the RP2D of 1.8 mg/m2. Using a single-stage design, with an overall response rate (ORR) ≤ 30% defined as not promissing and ORR > 55% as expected, 25 patients needed to be recruited to achieve 80% power at 0.05 significance level. Thirty-two patients were enrolled, 28 were treated, 27 were evaluable for response. The estimated ORR was 81.5% (95%CI: 61.9-93.7%), and 81.8% (18/22) of the responding subjects were minimal residual disease (MRD) negative. The study met its primary endpoint. Median follow up of survivors was 16 months (IQR: 14.49-20.07). One year Event Free Survival was 36.7% (95% CI: 22.2-60.4%), and Overall Survival was 55.1% (95% CI: 39.1-77.7%). Eighteen patients received consolidation (with HSCT and/or CAR T-cells therapy). Sinusoidal obstructive syndrome (SOS) occurred in seven patients. MRD negativity seemed correlated to calicheamicin sensitivity in vitro, but not to CD22 surface expression, saturation, or internalization. InO was effective in this population. The most relevant risk was the occurrence of SOS, particularly when InO treatment was followed by HSCT.


Asunto(s)
Calicheamicinas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Enfermedad Aguda , Adolescente , Niño , Preescolar , Humanos , Lactante , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Supervivencia sin Progresión
2.
Lancet Haematol ; 8(10): e700-e710, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34560013

RESUMEN

BACKGROUND: Patients with Down syndrome and acute lymphocytic leukaemia are at an increased risk of treatment-related mortality and relapse, which is influenced by unfavourable genetic aberrations (eg, IKZF1 deletion). We aimed to investigate the potential underlying effect of Down syndrome versus the effects of adverse cancer genetics on clinical outcome. METHOD: Patients (aged 1-23 years) with Down syndrome and acute lymphocytic leukaemia and matched non-Down syndrome patients with acute lymphocytic leukaemia (matched controls) from eight trials (DCOG ALL10 and ALL11, ANZCHOG ALL8, AIEOP-BFM ALL2009, UKALL2003, NOPHO ALL2008, CoALL 07-03, and CoALL 08-09) done between 2002 and 2018 across various countries (the Netherlands, the UK, Australia, Denmark, Finland, Iceland, Norway, Sweden, and Germany) were included. Participants were matched (1:3) for clinical risk factors and genetics, including IKZF1 deletion. The primary endpoint was the comparison of MRD levels (absolute MRD levels were categorised into two groups, low [<0·0001] and high [≥0·0001]) between patients with Down syndrome and acute lymphocytic leukaemia and matched controls, and the secondary outcomes were comparison of long-term outcomes (event-free survival, overall survival, relapse, and treatment-related mortality [TRM]) between patients with Down syndrome and acute lymphocytic leukaemia and matched controls. Two matched cohorts were formed: for MRD analyses and for long-term outcome analyses. For both cohorts, matching was based on induction regimen; for the long-term outcome cohort, matching also included MRD-guided treatment group. We used mixed-effect models, Cox models, and competing risk for statistical analyses. FINDINGS: Of 251 children and adolescents with Down syndrome and acute lymphocytic leukaemia, 136 were eligible for analyses and matched to 407 (of 8426) non-Down syndrome patients with acute lymphocytic leukaemia (matched controls). 113 patients with Down syndrome and acute lymphocytic leukaemia were excluded from matching in accordance with predefined rules, no match was available for two patients with Down syndrome and acute lymphocytic leukaemia. The proportion of patients with high MRD at the end of induction treatment was similar for patients with Down syndrome and acute lymphocytic leukaemia (52 [38%] of 136) and matched controls (157 [39%] of 403; OR 0·97 [95% CI 0·64-1·46]; p=0·88). Patients with Down syndrome and acute lymphocytic leukaemia had a higher relapse risk than did matched controls in the IKZF1 deleted group (relapse at 5 years 37·1% [17·1-57·2] vs 13·2% [6·1-23·1]; cause-specific hazard ratio [HRcs] 4·3 [1·6-11·0]; p=0·0028), but not in the IKZF1 wild-type group (relapse at 5 years 5·8% [2·1-12·2] vs 8·1% [5·1-12·0]; HRcs 1·0 [0·5-2·1]; p=0·99). In addition to increased induction deaths (15 [6%] of 251 vs 69 [0·8%] of 8426), Down syndrome and acute lymphocytic leukaemia was associated with a higher risk of post-induction TRM compared with matched controls (TRM at 5 years 12·2% [7·0-18·9] vs 2·7% [1·3-4·9]; HRcs 5·0 [2·3-10·8]; p<0·0001). INTERPRETATION: Induction treatment is equivalently effective for patients with Down syndrome and acute lymphocytic leukaemia and for matched patients without Down syndrome. Down syndrome itself provides an additional risk in individuals with IKZF1 deletions, suggesting an interplay between the germline environment and this poor risk somatic aberration. Different treatment strategies are warranted considering both inherent risk of relapse and high risk of TRM. FUNDING: Stichting Kinder Oncologisch Centrum Rotterdam and the Princess Máxima Center Foundation, NHMRC Australia, The Cancer Council NSW, Tour de Cure, Blood Cancer UK, UK Medical Research Council, Children with Cancer, Swedish Society for Pediatric Cancer, Swedish Childhood Cancer Fund, Danish Cancer Society and the Danish Childhood Cancer Foundation.


Asunto(s)
Síndrome de Down/complicaciones , Eliminación de Gen , Factor de Transcripción Ikaros/deficiencia , Factor de Transcripción Ikaros/genética , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Niño , Preescolar , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...