Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e12494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900423

RESUMEN

Managers need to know how to mitigate rising stream water temperature (WT) due to climate change. This requires identifying the environmental drivers that influence thermal regime and determining the spatial area where interventions are most effective. We hypothesized that (i) extreme thermal events can be influenced by a set of environmental factors that reduce thermal sensitivity and (ii) the role played by those factors varies spatially. To test these hypotheses, we (i) determined which of the environmental variables reported to be the most influential affected WT and (ii)identified the spatial scales over which those environmental variables influenced WT. To this end, the influence of multi-scale environmental variables, namely land cover, topography (channel slope, elevation), hydromorphology (channel sinuosity, water level, watershed area, baseflow index) and shade conditions, was analyzed on the three model variables (day thermal sensitivity, night thermal sensitivity, and non-convective thermal flux) in the model developed by Georges et al. (2021) of the temporal thermal dynamics of daily maximum WT during extreme events. Values were calculated on six spatial scales (the entire upstream catchment and the associated 1 km and 2 km circular buffer, and 50 m wide corridors on each side of the stream with the associated 1 km and 2 km circular buffer). The period considered was 17 extreme days during the summer identified by Georges et al. (2021) based on WT data measured every 10 min for 7 years (2012-2018) at 92 measurement sites. Sites were located evenly throughout the Wallonia (southern Belgium) hydrological network. Results showed that shade, baseflow index (a proxy of the influence of groundwater), water level and watershed area were the most significant variables influencing thermal sensitivity. Since managers with finite financial and human resources can act on only a few environmental variables, we advocate restoring and preserving the vegetation cover that limits solar radiation on the watercourse as a cost-effective solution to reduce thermal sensitivity. Moreover, management at small spatial scale (50 m riparian buffer) should be strategically promoted (for finance and staffing) as our results show that a larger management scale is not more effective in reducing thermal sensitivity to extreme events.

2.
J Environ Manage ; 267: 110652, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32349959

RESUMEN

Riparian vegetation is a central component of the hydrosystem. As such, it is often subject to management practices that aim to influence its ecological, hydraulic or hydrological functions. Remote sensing has the potential to improve knowledge and management of riparian vegetation by providing cost-effective and spatially continuous data over wide extents. The objectives of this review were twofold: to provide an overview of the use of remote sensing in riparian vegetation studies and to discuss the transferability of remote sensing tools from scientists to managers. We systematically reviewed the scientific literature (428 articles) to identify the objectives and remote sensing data used to characterize riparian vegetation. Overall, results highlight a strong relationship between the tools used, the features of riparian vegetation extracted and the mapping extent. Very high-resolution data are rarely used for rivers longer than 100 km, especially when mapping species composition. Multi-temporality is central in remote sensing riparian studies, but authors use only aerial photographs and relatively coarse resolution satellite images for diachronic analyses. Some remote sensing approaches have reached an operational level and are now used for management purposes. Overall, new opportunities will arise with the increased availability of very high-resolution data in understudied or data-scarce regions, for large extents and as time series. To transfer remote sensing approaches to riparian managers, we suggest mutualizing achievements by producting open-access and robust tools. These tools will then have to be adapted to each specific project, in collaboration with managers.


Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Ecosistema , Ríos
3.
J Environ Manage ; 202(Pt 2): 424-436, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242116

RESUMEN

Riparian buffers are of major concern for land and water resource managers despite their relatively low spatial coverage. In Europe, this concern has been acknowledged by different environmental directives which recommend multi-scale monitoring (from local to regional scales). Remote sensing methods could be a cost-effective alternative to field-based monitoring, to build replicable "wall-to-wall" monitoring strategies of large river networks and associated riparian buffers. The main goal of our study is to extract and analyze various parameters of the riparian buffers of up to 12,000 km of river in southern Belgium (Wallonia) from three-dimensional (3D) point clouds based on LiDAR and photogrammetric surveys to i) map riparian buffers parameters on different scales, ii) interpret the regional patterns of the riparian buffers and iii) propose new riparian buffer management indicators. We propose different strategies to synthesize and visualize relevant information at different spatial scales ranging from local (<10 km) to regional scale (>12,000 km). Our results showed that the selected parameters had a clear regional pattern. The reaches of Ardenne ecoregion have channels with the highest flow widths and shallowest depths. In contrast, the reaches of the Loam ecoregion have the narrowest and deepest flow channels. Regional variability in channel width and depth is used to locate management units potentially affected by human impact. Riparian forest of the Loam ecoregion is characterized by the lowest longitudinal continuity and mean tree height, underlining significant human disturbance. As the availability of 3D point clouds at the regional scale is constantly growing, our study proposes reproducible methods which can be integrated into regional monitoring by land managers. With LiDAR still being relatively expensive to acquire, the use of photogrammetric point clouds combined with LiDAR data is a cost-effective means to update the characterization of the riparian forest conditions.


Asunto(s)
Monitoreo del Ambiente , Bosques , Ríos , Bélgica , Europa (Continente) , Árboles
4.
Environ Monit Assess ; 188(3): 146, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26850712

RESUMEN

Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach competes successfully with those developed using more expensive imagery, such as multi-spectral and hyperspectral airborne imagery. The high overall accuracy results obtained by the classification of the diseased alders open the door to applications dedicated to monitoring of the health conditions of riparian forest. Our methodological framework will allow UAS users to manage large imagery metric datasets derived from those dense time series.


Asunto(s)
Monitoreo del Ambiente/métodos , Bosques , Tecnología de Sensores Remotos , Árboles/clasificación , Modelos Teóricos , Ríos
5.
PLoS One ; 10(11): e0141006, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26600422

RESUMEN

Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%).


Asunto(s)
Monitoreo del Ambiente , Agricultura Forestal , Árboles/fisiología , Aeronaves , Humanos , Hojas de la Planta/fisiología , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...