Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACC Cardiovasc Interv ; 16(20): 2479-2497, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37879802

RESUMEN

Artificial intelligence, computational simulations, and extended reality, among other 21st century computational technologies, are changing the health care system. To collectively highlight the most recent advances and benefits of artificial intelligence, computational simulations, and extended reality in cardiovascular therapies, we coined the abbreviation AISER. The review particularly focuses on the following applications of AISER: 1) preprocedural planning and clinical decision making; 2) virtual clinical trials, and cardiovascular device research, development, and regulatory approval; and 3) education and training of interventional health care professionals and medical technology innovators. We also discuss the obstacles and constraints associated with the application of AISER technologies, as well as the proposed solutions. Interventional health care professionals, computer scientists, biomedical engineers, experts in bioinformatics and visualization, the device industry, ethics committees, and regulatory agencies are expected to streamline the use of AISER technologies in cardiovascular interventions and medicine in general.


Asunto(s)
Inteligencia Artificial , Humanos , Resultado del Tratamiento
2.
Sci Rep ; 11(1): 12252, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112841

RESUMEN

The structural morphology of coronary stents (e.g. stent expansion, lumen scaffolding, strut apposition, tissue protrusion, side branch jailing, strut fracture), and the local hemodynamic environment after stent deployment are key determinants of procedural success and subsequent clinical outcomes. High-resolution intracoronary imaging has the potential to enable the geometrically accurate three-dimensional (3D) reconstruction of coronary stents. The aim of this work was to present a novel algorithm for 3D stent reconstruction of coronary artery stents based on optical coherence tomography (OCT) and angiography, and test experimentally its accuracy, reproducibility, clinical feasibility, and ability to perform computational fluid dynamics (CFD) studies. Our method has the following steps: 3D lumen reconstruction based on OCT and angiography, stent strut segmentation in OCT images, packaging, rotation and straightening of the segmented struts, planar unrolling of the segmented struts, planar stent wireframe reconstruction, rolling back of the planar stent wireframe to the 3D reconstructed lumen, and final stent volume reconstruction. We tested the accuracy and reproducibility of our method in stented patient-specific silicone models using micro-computed tomography (µCT) and stereoscopy as references. The clinical feasibility and CFD studies were performed in clinically stented coronary bifurcations. The experimental and clinical studies showed that our algorithm (1) can reproduce the complex spatial stent configuration with high precision and reproducibility, (2) is feasible in 3D reconstructing stents deployed in bifurcations, and (3) enables CFD studies to assess the local hemodynamic environment within the stent. Notably, the high accuracy of our algorithm was consistent across different stent designs and diameters. Our method coupled with patient-specific CFD studies can lay the ground for optimization of stenting procedures, patient-specific computational stenting simulations, and research and development of new stent scaffolds and stenting techniques.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Vasos Coronarios/cirugía , Imagenología Tridimensional , Stents , Cirugía Asistida por Computador , Tomografía de Coherencia Óptica , Algoritmos , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/patología , Humanos , Reproducibilidad de los Resultados , Cirugía Asistida por Computador/métodos , Tomografía de Coherencia Óptica/métodos , Microtomografía por Rayos X
3.
Sci Rep ; 11(1): 8728, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888765

RESUMEN

Left main (LM) coronary artery bifurcation stenting is a challenging topic due to the distinct anatomy and wall structure of LM. In this work, we investigated computationally and experimentally the mechanical performance of a novel everolimus-eluting stent (SYNERGY MEGATRON) purpose-built for interventions to large proximal coronary segments, including LM. MEGATRON stent has been purposefully designed to sustain its structural integrity at higher expansion diameters and to provide optimal lumen coverage. Four patient-specific LM geometries were 3D reconstructed and stented computationally with finite element analysis in a well-validated computational stent simulation platform under different homogeneous and heterogeneous plaque conditions. Four different everolimus-eluting stent designs (9-peak prototype MEGATRON, 10-peak prototype MEGATRON, 12-peak MEGATRON, and SYNERGY) were deployed computationally in all bifurcation geometries at three different diameters (i.e., 3.5, 4.5, and 5.0 mm). The stent designs were also expanded experimentally from 3.5 to 5.0 mm (blind analysis). Stent morphometric and biomechanical indices were calculated in the computational and experimental studies. In the computational studies the 12-peak MEGATRON exhibited significantly greater expansion, better scaffolding, smaller vessel prolapse, and greater radial strength (expressed as normalized hoop force) than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY (p < 0.05). Larger stent expansion diameters had significantly better radial strength and worse scaffolding than smaller stent diameters (p < 0.001). Computational stenting showed comparable scaffolding and radial strength with experimental stenting. 12-peak MEGATRON exhibited better mechanical performance than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY. Patient-specific computational LM stenting simulations can accurately reproduce experimental stent testing, providing an attractive framework for cost- and time-effective stent research and development.


Asunto(s)
Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/cirugía , Stents Liberadores de Fármacos , Everolimus/administración & dosificación , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Diseño de Equipo , Humanos
4.
EuroIntervention ; 13(15): e1794-e1803, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29131803

RESUMEN

This is a consensus document from the European Bifurcation Club concerning bench testing in coronary artery bifurcations. It is intended to provide guidelines for bench assessment of stents and other strategies in coronary bifurcation treatment where the United States Food and Drug Administration (FDA) or International Organization for Standardization (ISO) guidelines are limited or absent. These recommendations provide guidelines rather than a step-by-step manual. We provide data on the anatomy of bifurcations and elastic response of coronary arteries to aid model construction. We discuss testing apparatus, bench testing endpoints and bifurcation nomenclature.


Asunto(s)
Enfermedad de la Arteria Coronaria/cirugía , Vasos Coronarios/cirugía , Ensayo de Materiales/normas , Modelos Anatómicos , Intervención Coronaria Percutánea/normas , Consenso , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiopatología , Análisis de Falla de Equipo/normas , Hemodinámica , Humanos , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/instrumentación , Diseño de Prótesis , Falla de Prótesis , Stents/normas , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...