Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311661, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597694

RESUMEN

Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity. The heme-incorporated protein nanowires demonstrate electron transfer over micrometer distances, with conductive atomic force microscopy showing individual nanowires having comparable conductance to other previously characterized heme-based bacterial nanowires. Exposure of multilayer nanowire films to humidity produces an electrical current, presumably through water molecules ionizing carboxyl groups in the filament and creating an unbalanced total charge distribution that is enhanced by the heme. Incorporation of heme and potentially other metal-center porphyrin molecules into protein nanostructures could pave the way for structurally- and electrically-defined protein-based bioelectronic devices.

2.
Phys Chem Chem Phys ; 24(46): 28554-28563, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36412014

RESUMEN

Reported herein is a neutron reflectometry (NR) study on hydrated Nafion thin films (∼30 nm) on a silicon substrate with native oxide. The Nafion morphology is investigated systematically across the whole relative humidity range using both H2O and D2O vapours to enable a comparative study. By utilising this systematic approach two key results have been obtained. The first is that by leveraging the strong positive scattering signal from the D2O vapour, a complete and systematic water adsorption isotherm (Type II) for a Nafion thin film is produced. Utilising the slight negative scattering signal of the H2O enabled the quantification of the hydration dependent evolution of the formation of Nafion/water lamellae near the substrate surface. The number of lamellae layers increases continuously with hydration, and does not form abruptly. We also report the effects of swelling on the thin films across the relative humidity ranges. The work reported should prove useful in quantifying other hydration dependent properties of Nafion thin films such as conductivity and understanding Nafion/semiconductor based devices, as well as showcasing a NR methodology for other hydrophilic polymers.

3.
J Am Chem Soc ; 144(29): 13242-13253, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35830247

RESUMEN

The two-dimensional (2-D) framework, [Cu(BTDAT)(MeOH)] {BTDAT = bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane}, possesses remarkable multi-step redox properties, with electrochemical studies revealing six quasi-stable redox states in the solid state. In situ electron paramagnetic resonance and visible-near infrared spectroelectrochemistry elucidated the mechanism for these multi-step redox processes, as well as the optical and electrochromic behavior of the BTDAT ligand and framework. In studying the structural, spectroscopic, and electronic properties of [Cu(BTDAT)(MeOH)], the as-synthesized framework was found to exist in a mixed-valence state with thermally-activated semiconducting behavior. In addition to pressed pellet conductivity measurements, single-crystal conductivity measurements using a pre-patterned polydimethylsiloxane layer on a silicon substrate provide important insights into the anisotropic conduction pathways. As an avenue to further understand the electronic state of [Cu(BTDAT)(MeOH)], computational band structure calculations predicted delocalized electronic transport in the framework. On the balance of probabilities, we propose that [Cu(BTDAT)(MeOH)] is a Mott insulator (i.e., electron correlations cause a metal-insulator transition). This implies that the conductivity is incoherent. However, we are unable to distinguish between activated transport due to Coulombically bound electron-hole pairs and a hopping mechanism. The combined electrochemical, electronic, and optical properties of [Cu(BTDAT)(MeOH)] shine a new light on the experimental and theoretical challenges for electroactive framework materials, which are implicated as the basis of advanced optoelectronic and electrochromic devices.

4.
ACS Nano ; 15(4): 7226-7236, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33825436

RESUMEN

We report on the postgrowth shaping of free-standing two-dimensional (2D) InAs nanofins that are grown by selective-area epitaxy and mechanically transferred to a separate substrate for device fabrication. We use a citric acid-based wet etch that enables complex shapes, for example, van der Pauw cloverleaf structures, with patterning resolution down to 150 nm as well as partial thinning of the nanofin to improve local gate response. We exploit the high sensitivity of the cloverleaf structures to transport anisotropy to address the fundamental question of whether there is a measurable transport anisotropy arising from wurtzite/zincblende polytypism in 2D InAs nanostructures. We demonstrate a mobility anisotropy of order 2-4 at room temperature arising from polytypic stacking faults in our nanofins. Our work highlights a key materials consideration for devices featuring self-assembled 2D III-V nanostructures using advanced epitaxy methods.

5.
Nanoscale ; 12(39): 20317-20325, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33006359

RESUMEN

Recent advances in bottom-up growth are giving rise to a range of new two-dimensional nanostructures. Hall effect measurements play an important role in their electrical characterization. However, size constraints can lead to device geometries that deviate significantly from the ideal of elongated Hall bars with currentless contacts. Many devices using these new materials have a low aspect ratio and feature metal Hall probes that overlap with the semiconductor channel. This can lead to a significant distortion of the current flow. We present experimental data from InAs 2D nanofin devices with different Hall probe geometries to study the influence of Hall probe length and width. We use finite-element simulations to further understand the implications of these aspects and expand their scope to contact resistance and sample aspect ratio. Our key finding is that invasive probes lead to significant underestimation of measured Hall voltage, typically of the order 40-80%. This in turn leads to a subsequent proportional overestimation of carrier concentration and an underestimation of mobility.

6.
Nat Commun ; 10(1): 2109, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068594

RESUMEN

Nanopore sensors detect individual species passing through a nanoscale pore. This experimental paradigm suffers from long analysis times at low analyte concentration and non-specific signals in complex media. These limit effectiveness of nanopore sensors for quantitative analysis. Here, we address these challenges using antibody-modified magnetic nanoparticles ((anti-PSA)-MNPs) that diffuse at zero magnetic field to capture the analyte, prostate-specific antigen (PSA). The (anti-PSA)-MNPs are magnetically driven to block an array of nanopores rather than translocate through the nanopore. Specificity is obtained by modifying nanopores with anti-PSA antibodies such that PSA molecules captured by (anti-PSA)-MNPs form an immunosandwich in the nanopore. Reversing the magnetic field removes (anti-PSA)-MNPs that have not captured PSA, limiting non-specific effects. The combined features allow detecting PSA in whole blood with a 0.8 fM detection limit. Our 'magnetic nanoparticle, nanopore blockade' concept points towards a strategy to improving nanopore biosensors for quantitative analysis of various protein and nucleic acid species.


Asunto(s)
Anticuerpos/química , Técnicas Biosensibles/instrumentación , Nanopartículas de Magnetita/química , Nanoporos , Anticuerpos/inmunología , Técnicas Biosensibles/métodos , Calicreínas/análisis , Calicreínas/inmunología , Límite de Detección , Membranas Artificiales , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/inmunología , Compuestos de Silicona/química , Factores de Tiempo
7.
Sci Adv ; 2(11): e1601007, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28138526

RESUMEN

Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues.


Asunto(s)
Compuestos de Anilina , Quitosano , Membranas Artificiales , Miocardio , Ácido Fítico , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Animales , Quitosano/química , Quitosano/farmacología , Conductividad Eléctrica , Ácido Fítico/química , Ácido Fítico/farmacología , Ratas
8.
Nano Lett ; 14(1): 94-100, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24329104

RESUMEN

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices.

9.
Nano Lett ; 12(1): 1-6, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21322605

RESUMEN

An important consideration in miniaturizing transistors is maximizing the coupling between the gate and the semiconductor channel. A nanowire with a coaxial metal gate provides optimal gate-channel coupling but has only been realized for vertically oriented nanowire transistors. We report a method for producing laterally oriented wrap-gated nanowire field-effect transistors that provides exquisite control over the gate length via a single wet etch step, eliminating the need for additional lithography beyond that required to define the source/drain contacts and gate lead. It allows the contacts and nanowire segments extending beyond the wrap-gate to be controlled independently by biasing the doped substrate, significantly improving the subthreshold electrical characteristics. Our devices provide stronger, more symmetric gating of the nanowire, operate at temperatures between 300 and 4 K, and offer new opportunities in applications ranging from studies of one-dimensional quantum transport through to chemical and biological sensing.


Asunto(s)
Cristalización/métodos , Nanotecnología/instrumentación , Nanotubos/química , Nanotubos/ultraestructura , Transistores Electrónicos , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Propiedades de Superficie
10.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...