Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(25): 27113-27126, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947814

RESUMEN

The work is focused on the degradation, cytotoxicity, and antibacterial properties, of iron-based biomaterials with a bioactive coating layer. The foam and the compact iron samples were coated with a polyethylene glycol (PEG) polymer layer without and with gentamicin sulfate (PEG + Ge). The corrosion properties of coated and uncoated samples were studied using the degradation testing in Hanks' solution at 37 °C. The electrochemical and static immersion corrosion tests revealed that the PEG-coated samples corroded faster than samples with the bioactive PEG + Ge coating and uncoated samples. The foam samples corroded faster compared with the compact samples. To determine the cytotoxicity, cell viability was monitored in the presence of porous foam and compact iron samples. The antibacterial activity of the samples with PEG and PEG + Ge against Escherichia coli CCM 3954 and Staphylococcus aureus CCM 4223 strains was also tested. Tested PEG + Ge samples showed significant antibacterial activity against both bacterial strains. Therefore, the biodegradable iron-based materials with a bioactive coating could be a suitable successor to the metal materials studied thus far as well as the materials used in the field of medicine.

2.
Materials (Basel) ; 17(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38541539

RESUMEN

The surface-enhanced Raman scattering (SERS) properties of low-dimensional semiconducting MXene nanoflakes have been investigated over the last decade. Despite this fact, the relationship between the surface characteristics and SERSing performance of a MXene layer has yet to be comprehensively investigated and elucidated. This work shows the importance of surface morphology on the overall SERS effect by studying few-layer Ti3C2Tx MXene-based SERS substrates fabricated by vacuum-assisted filtration (VAF) and spray coating on filter paper. The VAF deposition results in a dense MXene layer suitable for SERS with high spot-to-spot and substrate-to-substrate reproducibility, with a significant limit of detection (LoD) of 20 nM for Rhodamine B analyte. The spray-coated MXenes film revealed lower uniformity, with a LoD of 50 nM for drop-casted analytes. Moreover, we concluded that the distribution of the analyte deposited onto the MXene layer is affected by the presence of MXene aggregates created during the deposition of the MXene layer. Accumulation of the analyte molecules in the vicinity of MXene aggregates was observed for drop-casted deposition of the analyte, which affects the resulting SERS enhancement. Ti3C2Tx MXene layers deposited on filter paper by VAF offer great potential as a cost-effective, easy-to-manufacture, yet robust, platform for sensing applications.

3.
ACS Appl Bio Mater ; 7(2): 936-949, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38299869

RESUMEN

In this study, a recently reported Ti-based metallic glass (MG), without any toxic element, but with a significant amount of metalloid (Si-Ge-B, 18 atom %) and minor soft element (Sn, 2 atom %), was produced in ribbon form using conventional single-roller melt-spinning. The produced Ti60Zr20Si8Ge7B3Sn2 ribbons were investigated by differential scanning calorimetry and X-ray diffraction to confirm their amorphous structure, and their corrosion properties were further investigated by open-circuit potential and cyclic polarization tests. The ribbon's surface was functionalized by tannic acid, a natural plant-based polyphenol, to enhance its performance in terms of corrosion prevention and antimicrobial efficacy. These properties can potentially be exploited in the premucosal parts of dental implants (abutments). The Folin and Ciocalteu test was used for the quantification of tannic acid (TA) grafted on the ribbon surface and of its redox activity. Fluorescent microscopy and ζ-potential measurements were used to confirm the presence of TA on the surfaces of the ribbons. The cytocompatibility evaluation (indirect and direct) of TA-functionalized Ti60Zr20Si8Ge7B3Sn2 MG ribbons toward primary human gingival fibroblast demonstrated that no significant differences in cell viability were detected between the functionalized and as-produced (control) MG ribbons. Finally, the antibacterial investigation of TA-functionalized samples against Staphylococcus aureus demonstrated the specimens' antimicrobial properties, shown by scanning electron microscopy images after 24 h, presenting a few single colonies remaining on their surfaces. The thickness of bacterial aggregations (biofilm-like) that were formed on the surface of the as-produced samples reduced from 3.5 to 1.5 µm.


Asunto(s)
Pilares Dentales , Polifenoles , Titanio , Humanos , Titanio/química , Vidrio/química , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA