Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Pathol Res Pract ; 252: 154947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977032

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/ß-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , MicroARNs , Neoplasias Pleurales , Humanos , MicroARNs/genética , Mesotelioma/diagnóstico , Neoplasias Pleurales/patología , Proteínas Hedgehog , Neoplasias Pulmonares/patología , Transducción de Señal/genética
2.
Pathol Res Pract ; 250: 154817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37713736

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.

3.
Pathol Res Pract ; 249: 154771, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37611429

RESUMEN

Merkel cell carcinoma (MCC) is an uncommon invasive form of skin cancer that typically manifests as a nodule on the face, head, or neck that is flesh-colored or bluish-red in appearance. Rapid growth and metastasis are hallmarks of MCC. MCC has the second-greatest mortality rate among skin cancers after melanoma. Despite the recent cascade of molecular investigations, no universal molecular signature has been identified as responsible for MCC's pathogenesis. The microRNAs (miRNAs) play a critical role in the post-transcriptional regulation of gene expression. Variations in the expression of these short, non-coding RNAs have been associated with various malignancies, including MCC. Although the incidence of MCC is very low, a significant amount of study has focused on the interaction of miRNAs in MCC. As such, the current survey is a speedy intensive route revealing the potential involvement of miRNAs in the pathogenesis of MCC beyond their association with survival in MCC.


Asunto(s)
Carcinoma de Células de Merkel , Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Melanoma/genética
4.
Pathol Res Pract ; 249: 154763, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37595447

RESUMEN

Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.


Asunto(s)
Carcinoma de Células de Merkel , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/diagnóstico , Carcinoma de Células de Merkel/genética , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética
5.
Pathol Res Pract ; 248: 154690, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37473498

RESUMEN

Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/patología , Pronóstico , Transducción de Señal/genética
6.
Pathol Res Pract ; 248: 154682, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451195

RESUMEN

microRNAs (also known as miRNAs or miRs) are a class of small non-coding RNAs that play a critical role in post-transcriptional gene regulation as negative gene regulators by binding complementary sequences in the 3'-UTR of target messenger RNAs (mRNAs) leading to translational repression and/or target degradation a wide range of genes and biological processes, including cell proliferation, invasion, migration, and apoptosis. The development and progression of cancer have been linked to the anomalous expression of miRNAs. According to recent studies, miRNAs have been found to regulate the expression of cancer-related genes through multiple signaling pathways in gallbladder cancer (GBC). Besides, miRNAs are implicated in several modulatory signaling pathways of GBC, including the Notch signaling pathway, JAK/STAT signaling pathway, protein kinase B (AKT), and Hedgehog signaling pathway. This review summarizes our current knowledge of the functions of miRNAs in the mechanisms underlying the pathogenic symptoms of GBC and illustrates their potential significance as treatment targets.


Asunto(s)
Carcinoma in Situ , Neoplasias de la Vesícula Biliar , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Vesícula Biliar/patología , Proteínas Hedgehog/genética , Regulación de la Expresión Génica , Transducción de Señal/genética , ARN Mensajero/genética
7.
Pathol Res Pract ; 248: 154704, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37499518

RESUMEN

Multiple myeloma (MM) is a tumor of transformed plasma cells. It's the second most common hematologic cancer after non-Hodgkin lymphoma. MM is a complex disease with many different risk factors, including ethnicity, race, and epigenetics. The microRNAs (miRNAs) are a critical epigenetic factor in multiple myeloma, influencing key aspects such as pathogenesis, prognosis, and resistance to treatment. They have the potential to assist in disease diagnosis and modulate the resistance behavior of MM towards therapeutic regimens. These characteristics could be attributed to the modulatory effects of miRNAs on some vital pathways such as NF-KB, PI3k/AKT, and P53. This review discusses the role of miRNAs in MM with a focus on their role in disease progression, diagnosis, and therapeutic resistance.


Asunto(s)
MicroARNs , Mieloma Múltiple , Humanos , MicroARNs/metabolismo , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica
8.
Pathol Res Pract ; 248: 154665, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37418996

RESUMEN

Adrenocortical carcinoma (ACC) is an uncommon aggressive endocrine malignancy that is nonetheless associated with significant mortality and morbidity rates because of endocrine and oncological consequences. Recent genome-wide investigations of ACC have advanced our understanding of the disease, but substantial obstacles remain to overcome regarding diagnosis and prognosis. MicroRNAs (miRNAs, miRs) play a crucial role in the development and metastasis of a wide range of carcinomas by regulating the expression of their target genes through various mechanisms causing translational repression or messenger RNA (mRNA) degradation. Along with miRNAs in the adrenocortical cancerous tissue, circulating miRNAs are considered barely invasive diagnostic or prognostic biomarkers of ACC. miRNAs may serve as treatment targets that expand the rather-limited therapeutic repertoire in the field of ACC. Patients with advanced ACC still have a poor prognosis when using the available treatments, despite a substantial improvement in understanding of the illness over the previous few decades. Accordingly, in this review, we provide a crucial overview of the recent studies in ACC-associated miRNAs regarding their diagnostic, prognostic, and potential therapeutic relevance.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Carcinoma Corticosuprarrenal/diagnóstico , Carcinoma Corticosuprarrenal/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Corteza Suprarrenal/diagnóstico , Neoplasias de la Corteza Suprarrenal/genética , Pronóstico , Resistencia a Medicamentos
9.
Pathol Res Pract ; 248: 154715, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37517169

RESUMEN

Multiple myeloma (MM) is a cancer of plasma cells that has been extensively studied in recent years, with researchers increasingly focusing on the role of microRNAs (miRNAs) in regulating gene expression in MM. Several non-coding RNAs have been demonstrated to regulate MM pathogenesis signaling pathways. These pathways might regulate MM development, apoptosis, progression, and therapeutic outcomes. They are Wnt/ß-catenin, PI3K/Akt/mTOR, P53 and KRAS. This review highlights the impending role of miRNAs in MM signaling and their relationship with MM therapeutic interventions.

10.
Pathol Res Pract ; 248: 154684, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454489

RESUMEN

Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.


Asunto(s)
Carcinoma in Situ , Neoplasias de la Vesícula Biliar , MicroARNs , Humanos , MicroARNs/genética , Neoplasias de la Vesícula Biliar/diagnóstico , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Regulación Neoplásica de la Expresión Génica/genética , Resistencia a Medicamentos , Pronóstico
11.
Pathol Res Pract ; 248: 154611, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315401

RESUMEN

Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.


Asunto(s)
MicroARNs , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Masculino , Adolescente , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Transducción de Señal/genética
12.
Pathol Res Pract ; 248: 154612, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327566

RESUMEN

Testicular cancer (TC) is one of the most frequently incident solid tumors in males. A growing prevalence has been documented in developed countries. Although recent advances have made TC an exceedingly treatable cancer, numerous zones in TC care still have divisive treatment decisions. In addition to physical examination and imaging techniques, conventional serum tumor markers have been traditionally used for the diagnosis of testicular germ cell tumors (TGCT). Unlike other genital and urinary tract tumors, recent research methods have not been broadly used in TGCTs. Even though several challenges in TC care must be addressed, a dedicated group of biomarkers could be particularly beneficial to help classify patient risk, detect relapse early, guide surgery decisions, and tailor follow-up. Existing tumor markers (Alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase) have limited accuracy and sensitivity when used as diagnostic, prognostic, or predictive markers. At present, microRNAs (miRNA or miR) play a crucial role in the process of several malignancies. The miRNAs exhibit pronounced potential as novel biomarkers since they reveal high stability in body fluids, are easily detected, and are relatively inexpensive in quantitative assays. In this review, we aimed to shed light on the recent novelties in developing microRNAs as diagnostic and prognostic markers in TC and discuss their clinical applications in TC management.


Asunto(s)
MicroARNs , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Masculino , Humanos , MicroARNs/genética , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Neoplasias de Células Germinales y Embrionarias/diagnóstico , Neoplasias de Células Germinales y Embrionarias/genética , Biomarcadores de Tumor/genética , Resistencia a Medicamentos
13.
Pathol Res Pract ; 248: 154613, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327567

RESUMEN

MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.

14.
Pathol Res Pract ; 248: 154624, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348290

RESUMEN

For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Cardiovasculares/genética , Transducción de Señal , Regulación de la Expresión Génica
15.
Pathol Res Pract ; 246: 154512, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37172525

RESUMEN

Long non-coding RNAs (lncRNAs) are a class of noncoding RNAs with a length larger than 200 nucleotides that participate in various diseases and biological processes as they can control gene expression by different mechanisms. Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder characterized by symmetrical destructive destruction of distal joints as well as extra-articular involvement. Different studies have documented and proven the abnormal expression of lncRNAs in RA patients. Various lncRNAs have proven potential as biomarkers and targets for diagnosing, prognosis and treating RA. This review will focus on RA pathogenesis, clinical implications, and related lncRNA expressions that help to identify new biomarkers and treatment targets.


Asunto(s)
Artritis Reumatoide , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , ARN no Traducido , Biomarcadores/metabolismo
16.
Pathol Res Pract ; 245: 154440, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37031531

RESUMEN

MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.


Asunto(s)
Neoplasias Óseas , MicroARNs , Humanos , MicroARNs/metabolismo , Huesos/metabolismo , Osteoclastos , Osteoblastos/metabolismo , Neoplasias Óseas/genética
17.
Pathol Res Pract ; 245: 154439, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37028108

RESUMEN

Renal cell carcinoma (RCC) has the highest mortality rate of all genitourinary cancers, and its prevalence has grown over time. While RCC can be surgically treated and recurrence is only probable in a tiny proportion of patients, early diagnosis is crucial. Mutations in a large number of oncogenes and tumor suppressor genes contribute to pathway dysregulation in RCC. MicroRNAs (miRNAs) have considerable promise as biomarkers for detecting cancer due to their special combination of properties. Several miRNAs have been proposed as a diagnostic or monitoring tool for RCC based on their presence in the blood or urine. Moreover, the expression profile of particular miRNAs has been associated with the response to chemotherapy, immunotherapy, or targeted therapeutic options like sunitinib. The goal of this review is to go over the development, spread, and evolution of RCC. Also, we emphasize the outcomes of studies that examined the use of miRNAs in RCC patients as biomarkers, therapeutic targets, or modulators of responsiveness to treatment modalities.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/metabolismo , MicroARNs/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/terapia , Neoplasias Renales/metabolismo , Biomarcadores de Tumor/metabolismo , Oncogenes , Regulación Neoplásica de la Expresión Génica
18.
Pathol Res Pract ; 243: 154375, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801506

RESUMEN

MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.


Asunto(s)
Carcinoma Hepatocelular , Hepatopatías , Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patología , Biomarcadores , Cirrosis Hepática , ARN Mensajero/genética , Hepatopatías/genética , Hepatopatías/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA