Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proteomics ; : e2300055, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644352

RESUMEN

Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups-low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)-identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8-1291.0 µg protein: 1.38 × 1011-1.10 × 1012 particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).

2.
Nat Commun ; 15(1): 1310, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346985

RESUMEN

Poly-γ-glutamate tails are a distinctive feature of archaeal, bacterial, and eukaryotic cofactors, including the folates and F420. Despite decades of research, key mechanistic questions remain as to how enzymes successively add glutamates to poly-γ-glutamate chains while maintaining cofactor specificity. Here, we show how poly-γ-glutamylation of folate and F420 by folylpolyglutamate synthases and γ-glutamyl ligases, non-homologous enzymes, occurs via processive addition of L-glutamate onto growing γ-glutamyl chain termini. We further reveal structural snapshots of the archaeal γ-glutamyl ligase (CofE) in action, crucially including a bulged-chain product that shows how the cofactor is retained while successive glutamates are added to the chain terminus. This bulging substrate model of processive poly-γ-glutamylation by terminal extension is arguably ubiquitous in such biopolymerisation reactions, including addition to folates, and demonstrates convergent evolution in diverse species from archaea to humans.


Asunto(s)
Ácido Fólico , Ácido Glutámico , Humanos , Péptido Sintasas/metabolismo , Bacterias/metabolismo , Procesamiento Proteico-Postraduccional
3.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 971-979, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860959

RESUMEN

Cell-surface proteins known as adhesins enable bacteria to colonize particular environments, and in Gram-positive bacteria often contain autocatalytically formed covalent intramolecular cross-links. While investigating the prevalence of such cross-links, a remarkable example was discovered in Mobiluncus mulieris, a pathogen associated with bacterial vaginosis. This organism encodes a putative adhesin of 7651 residues. Crystallography and mass spectrometry of two selected domains, and AlphaFold structure prediction of the remainder of the protein, were used to show that this adhesin belongs to the family of thioester, isopeptide and ester-bond-containing proteins (TIE proteins). It has an N-terminal domain homologous to thioester adhesion domains, followed by 51 immunoglobulin (Ig)-like domains containing ester- or isopeptide-bond cross-links. The energetic cost to the M. mulieris bacterium in retaining such a large adhesin as a single gene or protein construct suggests a critical role in pathogenicity and/or persistence.


Asunto(s)
Adhesinas Bacterianas , Mobiluncus , Femenino , Humanos , Mobiluncus/metabolismo , Adhesinas Bacterianas/química , Ésteres/química
4.
Foods ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238786

RESUMEN

New Zealand manuka (Leptospermum scoparium) honey is a premium food product. Unfortunately, its high demand has led to "not true to label" marketed manuka honey. Robust methods are therefore required to determine authenticity. We previously identified three unique nectar-derived proteins in manuka honey, detected as twelve tryptic peptide markers, and hypothesized these could be used to determine authenticity. We invoked a targeted proteomic approach based on parallel reaction-monitoring (PRM) to selectively monitor relative abundance of these peptides in sixteen manuka and twenty six non-manuka honey samples of various floral origin. We included six tryptic peptide markers derived from three bee-derived major royal jelly proteins as potential internal standards. The twelve manuka-specific tryptic peptide markers were present in all manuka honeys with minor regional variation. By comparison, they had negligible presence in non-manuka honeys. Bee-derived peptides were detected in all honeys with similar relative abundance but with sufficient variation precluding their utility as internal standards. Manuka honeys displayed an inverse relationship between total protein content and the ratio between nectar- to bee-derived peptide abundance. This trend reveals an association between protein content on possible nectar processing time by bees. Overall, these findings demonstrate the first successful application of peptide profiling as an alternative and potentially more robust approach for manuka honey authentication.

5.
J Cell Commun Signal ; 17(3): 925-937, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37043098

RESUMEN

Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.

6.
Plant Cell ; 34(12): 4950-4972, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36130293

RESUMEN

Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Glutámico , Espectrometría de Masas en Tándem , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pseudomonas syringae/metabolismo , Glycine max/metabolismo , Transferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología
7.
Front Immunol ; 12: 702877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335616

RESUMEN

Background: Acute rheumatic fever (ARF) is a serious sequela of Group A Streptococcus (GAS) infection associated with significant global mortality. Pathogenesis remains poorly understood, with the current prevailing hypothesis based on molecular mimicry and the notion that antibodies generated in response to GAS infection cross-react with cardiac proteins such as myosin. Contemporary investigations of the broader autoantibody response in ARF are needed to both inform pathogenesis models and identify new biomarkers for the disease. Methods: This study has utilised a multi-platform approach to profile circulating autoantibodies in ARF. Sera from patients with ARF, matched healthy controls and patients with uncomplicated GAS pharyngitis were initially analysed for autoreactivity using high content protein arrays (Protoarray, 9000 autoantigens), and further explored using a second protein array platform (HuProt Array, 16,000 autoantigens) and 2-D gel electrophoresis of heart tissue combined with mass spectrometry. Selected autoantigens were orthogonally validated using conventional immunoassays with sera from an ARF case-control study (n=79 cases and n=89 matched healthy controls) and a related study of GAS pharyngitis (n=39) conducted in New Zealand. Results: Global analysis of the protein array data showed an increase in total autoantigen reactivity in ARF patients compared with controls, as well as marked heterogeneity in the autoantibody profiles between ARF patients. Autoantigens previously implicated in ARF pathogenesis, such as myosin and collagens were detected, as were novel candidates. Disease pathway analysis revealed several autoantigens within pathways linked to arthritic and myocardial disease. Orthogonal validation of three novel autoantigens (PTPN2, DMD and ANXA6) showed significant elevation of serum antibodies in ARF (p < 0.05), and further highlighted heterogeneity with patients reactive to different combinations of the three antigens. Conclusions: The broad yet heterogenous elevation of autoantibodies observed suggests epitope spreading, and an expansion of the autoantibody repertoire, likely plays a key role in ARF pathogenesis and disease progression. Multiple autoantigens may be needed as diagnostic biomarkers to capture this heterogeneity.


Asunto(s)
Autoanticuerpos/sangre , Autoantígenos/química , Análisis por Matrices de Proteínas , Fiebre Reumática/sangre , Streptococcus pyogenes , Niño , Humanos , Nueva Zelanda
8.
RSC Med Chem ; 12(1): 57-61, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34046597

RESUMEN

Itaconate is a mammalian antimicrobial metabolite that inhibits the isocitrate lyases (ICLs) of Mycobacterium tuberculosis. Herein, we report that ICLs form a covalent adduct with itaconate through their catalytic cysteine residue. These results reveal atomic details of itaconate inhibition and provide insights into the catalytic mechanism of ICLs.

9.
Food Chem ; 350: 128442, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33388180

RESUMEN

Proteomics is an emerging tool in food authentication that has not been optimised for honey analysis. In this study, we present a qualitative proteomic analysis of New Zealand manuka (Leptospermum scoparium) honey. A total of fifty bee-derived proteins were identified in the honey, the most predominant being major royal jelly proteins (MRJPs). We also demonstrate for the first time the presence of unique nectar-derived proteins in manuka honey. A total of 17 manuka plant proteins were identified, a-third of which were putative pathogenesis-related proteins. Two proteins involved in drought tolerance were also identified. Twelve candidate peptides were selected as potential authentication markers based on their uniqueness to manuka honey. Nectar analyses confirmed the origin and specificity of these peptides to L. scoparium nectar, thus presenting peptide profiling as a viable and novel approach for manuka honey authentication. Raw data are available via ProteomeXchange with identifier PXD021730.


Asunto(s)
Biomarcadores/análisis , Leptospermum/química , Péptidos/análisis , Proteómica/métodos , Néctar de las Plantas/química
10.
Cartilage ; 12(2): 192-210, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-30486653

RESUMEN

OBJECTIVE: It was hypothesized that the respective protein profiles of bovine cartilage from sites of localized mild to moderate (GI to GII) degeneration versus adjacent sites of intact tissue would vary in accordance with the tissue microstructural changes associated with a pre-osteoarthritic state. METHODS: A total of 15 bovine patellae were obtained for this study. Paired samples of tissue were collected from the lateral region of each patella. If the patella contained a site of degeneration, a paired tissue set involved taking one sample each from the degenerated site and the intact tissue adjacent to it. Sufficient tissue was collected to facilitate 2 arms of investigation: microstructural imaging and proteome analysis. The microstructural analysis used a bespoke tissue preparation technique imaged with differential interference contrast optical microscopy to assess fibrillar scale destructuring and underlying bone spicule formation. An iTRAQ-based proteome analysis was performed using liquid chromatography-tandem mass spectrometry to identify the differential levels of proteins across the intact and degenerated cartilage and further, the results were validated with multiple reaction monitoring assay. RESULTS: In the healthy cartilage pairs, there was no significant variation in protein profiles between 2 adjacent sample sites. In pairs of tissue that contained a sample of GI/GII tissue, there were both significant microstructural changes as well as the difference in abundance levels of 24 proteins. CONCLUSIONS: From the known functions of the 24 proteins, found to be strongly aligned with the specific microstructural changes observed, a unique "proteins ensemble" involved in the initiation and progression of early cartilage degeneration is proposed.


Asunto(s)
Cartílago Articular/metabolismo , Cartílago Articular/ultraestructura , Osteoartritis/metabolismo , Osteoartritis/patología , Proteoma/análisis , Animales , Bovinos , Modelos Animales de Enfermedad , Microscopía de Interferencia , Rótula/metabolismo , Rótula/ultraestructura , Proteómica/métodos
11.
Immun Inflamm Dis ; 9(1): 90-107, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33220024

RESUMEN

INTRODUCTION: The pathophysiology and temporal dynamics of affected tissues in chronic rhinosinusitis (CRS) remain poorly understood. Here, we present a multiomics-based time-series assessment of nasal polyp biopsies from three patients with CRS, assessing natural variability over time and local response to systemic corticosteroid therapy. METHODS: Polyp tissue biopsies were collected at three time points over two consecutive weeks. Patients were prescribed prednisone (30 mg daily) for 1 week between Collections 2 and 3. Polyp transcriptome, proteome, and microbiota were assessed via RNAseq, SWATH mass spectrometry, and 16S ribosomal RNA and ITS2 amplicon sequencing. Baseline interpatient variability, natural intrapatient variability over time, and local response to systemic corticosteroids, were investigated. RESULTS: Overall, the highly abundant transcripts and proteins were associated with pathways involved in inflammation, FAS, cadherin, integrin, Wnt, apoptosis, and cytoskeletal signaling, as well as coagulation and B- and T-cell activation. Transcripts and proteins that naturally varied over time included those involved with inflammation- and epithelial-mesenchymal transition-related pathways, and a number of common candidate target biomarkers of CRS. Ten transcripts responded significantly to corticosteroid therapy, including downregulation of TNF, CCL20, and GSDMA, and upregulation of OVGP1, and PCDHGB1. Members of the bacterial genus Streptococcus positively correlated with immunoglobulin proteins IGKC and IGHG1. CONCLUSIONS: Understanding natural dynamics of CRS-associated tissues is essential to provide baseline context for all studies on putative biomarkers, mechanisms, and subtypes of CRS. These data further our understanding of the natural dynamics within nasal polypoid tissue, as well as local changes in response to systemic corticosteroid therapy.


Asunto(s)
Microbiota , Pólipos Nasales , Rinitis , Sinusitis , Corticoesteroides/uso terapéutico , Humanos , Pólipos Nasales/tratamiento farmacológico , Proteínas de Neoplasias , Rinitis/tratamiento farmacológico , Sinusitis/tratamiento farmacológico
12.
Biomacromolecules ; 22(2): 299-308, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33295758

RESUMEN

Growth hormone (GH) has been implicated in cancer progression andis a potential target for anticancer therapy. Currently, pegvisomant is the only GH receptor (GHR) antagonist approved for clinical use. Pegvisomant is a mutated GH molecule (B2036) which is PEGylated on amine groups to extend serum half-life. However, PEGylation significantly reduces the bioactivity of the antagonist in mice. To improve bioactivity, we generated a series of B2036 conjugates with the site-specific attachment of 20, 30, or 40 kDa methoxyPEG maleimide (mPEG maleimide) by introduction of a cysteine residue at amino acid 144 (S144C). Recombinant B2036-S144C was expressed in Escherichia coli, purified, and then PEGylated using cysteine-specific conjugation chemistry. To avoid issues with dimerization due to the introduced cysteine, B2036-S144C was PEGylated while immobilized on an Ni-nitrilotriacetic (Ni-NTA) acid column, which effectively reduced disulfide-mediated dimer formation and allowed efficient conjugation to mPEG maleimide. Following PEGylation, the IC50 values for the 20, 30, and 40 kDa mPEG maleimide B2036-S144C conjugates were 66.2 ± 3.8, 106.1 ± 7.1, and 127.4 ± 3.6 nM, respectively. The circulating half-life of the 40 kDa mPEG conjugate was 58.3 h in mice. Subcutaneous administration of the 40 kDa mPEG conjugate (10 mg/kg/day) reduced serum insulin-like growth factor I (IGF-I) concentrations by 50.6%. This in vivo reduction in serum IGF-I was at a considerably lower dose compared to the higher doses required to observe comparable activity in studies with pegvisomant. In conclusion, we have generated a novel PEGylated GHR antagonist by the solid-phase site-specific attachment of mPEG maleimide at an introduced cysteine residue, which effectively reduces serum IGF-I in vivo.


Asunto(s)
Cisteína , Hormona del Crecimiento , Animales , Dimerización , Escherichia coli , Humanos , Ratones , Proteínas Recombinantes
13.
ACS Omega ; 5(15): 8858-8866, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337448

RESUMEN

Manuka honey is a premium food product with unique antimicrobial bioactivity. Concerns with mislabeled manuka honey require robust assays to determine authenticity. Lepteridine is a Leptospermum-specific fluorescent molecule with potential as an authenticity marker. We describe a mass spectrometry-based assay to measure lepteridine based on an isotopically labeled lepteridine standard. Using this assay, lepteridine concentrations in manuka honey samples strongly correlated with concentrations quantitated by either high-performance liquid chromatography-ultraviolet (HPLC-UV) or fluorescence. A derived minimum lepteridine threshold concentration was compared with the New Zealand regulatory definition for manuka honey to determine "manuka honey" authenticity on a set of commercial samples. Both methods effectively distinguished manuka honey from non-manuka honeys. The regulatory definition excludes lepteridine but otherwise includes the quantification of multiple floral markers together with pollen analysis. Our findings suggest that the quantification of lepteridine alone or in combination with leptosperin could be implemented as an effective screening method to identify manuka honey, likely to achieve an outcome similar to the regulatory definition.

14.
IUBMB Life ; 72(2): 266-274, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31509345

RESUMEN

In Escherichia coli, the expression of heterologous genes for the production of recombinant proteins can be challenging due to the codon bias of different organisms. The rare codons AGG and AGA are among the rarest in E. coli. In this work, by using the human gene RioK2 as case study, we found that the presence of consecutive AGG-AGA led to a premature stop, which may be caused by an event of -1 frameshift. We found that translational problems caused by consecutive AGG-AGA are sequence dependent, in particular, in sequences that contain multiple rare AGG or AGA codons elsewhere. Translational problems can be alleviated by different strategies, including codon harmonization, codon optimization, or by substituting the consecutive AGG-AGA codons by more frequent arginine codons. Overall, our results furthered our understanding about the relationship between consecutive rare codons and translational problems. Such information will aid the design of DNA sequence for the production of recombinant proteins.


Asunto(s)
Codón , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Arginina/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Humanos , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Proteínas Recombinantes/genética , Ribosomas/metabolismo
15.
Histochem Cell Biol ; 152(4): 293-310, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31396687

RESUMEN

The cystine-glutamate exchanger (system xc-) is responsible for the exchange of extracellular cystine for intracellular glutamate. In this study, we mapped the expression of xCT, the light chain subunit of system xc- in the different tissues of 3-6-week-old mouse (C57BL/6J) eye and have used an xCT knockout mouse to verify labelling specificity. Moreover, using the xCT knockout mouse, we investigated whether xCT was involved in maintaining extracellular redox balance in the eye. xCT transcript and protein were present in the cornea, lens and retina of wild-type mice, but not knockout mice. xCT was localised to the corneal epithelium, and the lens epithelium and cortical fibre cells but was absent in the iris. xCT localisation could not be determined in the ciliary body or retina, since xCT labelling was also detected in the knockout indicating a lack of specificity of the xCT antibody in tissues of a neural origin. Intracellular cysteine and cystine concentrations were similar in the wild-type and xCT knockout mouse for the cornea, lens, and retina. While extracellular cysteine levels were similar between the plasma, aqueous humour, and vitreous humour of the wild-type and xCT knockout mouse, extracellular cystine levels in the plasma and aqueous were significantly elevated in the xCT knockout mouse relative to the wild type. This suggests that loss of xCT results in an increased oxidative environment, particularly within the anterior chamber of the eye in which the aqueous humour resides. How this oxidative shift impacts ocular tissues that interface with the aqueous humour over time will be the focus of future work.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/análisis , Sistema de Transporte de Aminoácidos y+/metabolismo , Ojo/química , Ojo/metabolismo , Sistema de Transporte de Aminoácidos y+/deficiencia , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción
16.
ACS Med Chem Lett ; 10(8): 1180-1186, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31413803

RESUMEN

Aberration in FGFR4 signaling drives carcinogenesis and progression in a subset of hepatocellular carcinoma (HCC) patients, thereby making FGFR4 an attractive molecular target for this disease. Selective FGFR4 inhibition can be achieved through covalently targeting a poorly conserved cysteine residue in the FGFR4 kinase domain. We report mass spectrometry assays and cocrystal structures of FGFR4 in covalent complex with the clinical candidate BLU554 and with a series of four structurally related inhibitors that define the inherent reactivity and selectivity profile of these molecules. We further reveal the structure of FGFR1 with one of our inhibitors and show that off-target covalent binding can occur through an alternative conformation that supports targeting of a cysteine conserved in all members of the FGFR family. Collectively, we propose that rotational freedom, steric hindrance, and protein dynamics explain the exceptional selectivity profile of BLU554 for targeting FGFR4.

17.
Biochimie ; 165: 40-47, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31283975

RESUMEN

Polyphenol oxidases (PPOs) are important enzymes that are widely found in both prokaryotes and eukaryotes including grapes. Studies of grape PPO to date have mostly relied on enzymes extracted and purified from plants. In this work, we describe the production of the mature form of Shine Muscat grape PPO by using an Escherichia coli expression system. We have optimised the purification procedure to obtain pure and active recombinant enzymes and characterised the catalytic efficiency of the recombinant grape PPO by using ultraviolet/visible (UV/Vis) spectrophotometry. Our work provides a simple protocol of obtaining pure and active recombinant grape PPO that will enable further studies about the catalytic mechanism and inhibition of this enzyme.


Asunto(s)
Catecol Oxidasa , Proteínas de Plantas , Proteínas Recombinantes , Vitis/enzimología , Catecol Oxidasa/biosíntesis , Catecol Oxidasa/química , Catecol Oxidasa/aislamiento & purificación , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
18.
Environ Sci Technol ; 53(16): 9553-9563, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31356060

RESUMEN

Organic micropollutants (OMPs) are pervasive anthropogenic contaminants of receiving waters where they can induce various adverse effects to aquatic life. Their ubiquitous environmental occurrence is primarily attributed to discharge from wastewater treatment plants due to incomplete removal by common biological wastewater treatment processes. Here, we assess a new strategy for promoting the degradation of six representative OMPs (i.e., sulfamethoxazole, carbamazepine, tylosin, atrazine, naproxen, and ibuprofen) by intentionally stimulating the production of microbial oxidoreductases to counter oxidative stress caused by oxygen perturbations. Mixed microbial cultures from a dairy farm wastewater were subjected to cyclic perturbations of dissolved oxygen (DO). A distance-based redundancy analysis was used to show that DO perturbations correlate with the abundance of Pseudomonadaceae and Rhodocyclaceae families, activities of peroxidases and cytochromes, and the degradation of OMPs. DO perturbation of 0.25 and 0.5 cycles/h led to most abundance of Pseudomonadaceae and Rhodocyclaceae families, showed higher activity of peroxidase and cytochrome, and gave largest removal of OMPs (removal of 92 ± 3% for sulfamethoxazole, 84 ± 3% for naproxen, 82 ± 3% for ibuprofen, 66 ± 2% for carbamazepine, 57 ± 15% for tylosin, and 88 ± 1% for atrazine).


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Estrés Oxidativo , Sulfametoxazol , Eliminación de Residuos Líquidos
19.
Nat Commun ; 10(1): 1558, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952857

RESUMEN

Cofactor F420 plays critical roles in primary and secondary metabolism in a range of bacteria and archaea as a low-potential hydride transfer agent. It mediates a variety of important redox transformations involved in bacterial persistence, antibiotic biosynthesis, pro-drug activation and methanogenesis. However, the biosynthetic pathway for F420 has not been fully elucidated: neither the enzyme that generates the putative intermediate 2-phospho-L-lactate, nor the function of the FMN-binding C-terminal domain of the γ-glutamyl ligase (FbiB) in bacteria are known. Here we present the structure of the guanylyltransferase FbiD and show that, along with its archaeal homolog CofC, it accepts phosphoenolpyruvate, rather than 2-phospho-L-lactate, as the substrate, leading to the formation of the previously uncharacterized intermediate dehydro-F420-0. The C-terminal domain of FbiB then utilizes FMNH2 to reduce dehydro-F420-0, which produces mature F420 species when combined with the γ-glutamyl ligase activity of the N-terminal domain. These new insights have allowed the heterologous production of F420 from a recombinant F420 biosynthetic pathway in Escherichia coli.


Asunto(s)
Vías Biosintéticas , Escherichia coli/metabolismo , Riboflavina/análogos & derivados , Modelos Moleculares , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Células Procariotas/metabolismo , Riboflavina/biosíntesis
20.
ChemMedChem ; 14(4): 494-500, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30600916

RESUMEN

1-[(3S)-3-[4-Amino-3-[2-(3,5-dimethoxyphenyl)ethynyl]-1H-pyrazolo[3,4-d]pyrimidin-1-yl]-1-pyrrolidinyl]-2-propen-1-one (TAS-120) is an irreversible inhibitor of the fibroblast growth factor receptor (FGFR) family, and is currently under phase I/II clinical trials in patients with confirmed advanced metastatic solid tumours harbouring FGFR aberrations. This inhibitor specifically targets the P-loop of the FGFR tyrosine kinase domain, forming a covalent adduct with a cysteine side chain of the protein. Our mass spectrometry experiments characterise an exceptionally fast chemical reaction in forming the covalent complex. The structural basis of this reactivity is revealed by a sequence of three X-ray crystal structures: a free ligand structure, a reversible FGFR1 structure, and the first reported irreversible FGFR1 adduct structure. We hypothesise that the most significant reactivity feature of TAS-120 is its inherent ability to undertake conformational sampling of the FGFR P-loop. In designing novel covalent FGFR inhibitors, such a phenomenon presents an attractive strategy requiring appropriate positioning of an acrylamide group similarly to that of TAS-120.


Asunto(s)
Pirazoles/química , Pirimidinas/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Pirazoles/metabolismo , Pirimidinas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...