Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(9): 1456-1472.e6, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412858

RESUMEN

Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke.


Asunto(s)
Circulación Colateral , Accidente Cerebrovascular Isquémico , Meninges , Reperfusión , Animales , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/terapia , Ratones , Circulación Colateral/fisiología , Humanos , Reperfusión/métodos , Meninges/irrigación sanguínea , Masculino , Circulación Cerebrovascular/fisiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Encéfalo/irrigación sanguínea , Trombectomía/métodos
2.
Stroke ; 53(4): 1386-1395, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35240860

RESUMEN

BACKGROUND: Cortical spreading depolarization (CSD) is a massive neuro-glial depolarization wave, which propagates across the cerebral cortex. In stroke, CSD is a necessary and ubiquitous mechanism for the development of neuronal lesions that initiates in the ischemic core and propagates through the penumbra extending the tissue injury. Although CSD propagation induces dramatic changes in cerebral blood flow, the vascular responses in different ischemic regions and their consequences on reperfusion and recovery remain to be defined. METHODS: Ischemia was performed using the thrombin model of stroke and reperfusion was induced by r-tPA (recombinant tissue-type plasminogen activator) administration in mice. We used in vivo electrophysiology and laser speckle contrast imaging simultaneously to assess both electrophysiological and hemodynamic characteristics of CSD after ischemia onset. Neurological deficits were assessed on day 1, 3, and 7. Furthermore, infarct sizes were quantified using 2,3,5-triphenyltetrazolium chloride on day 7. RESULTS: After ischemia, CSDs were evidenced by the characteristic propagating DC shift extending far beyond the ischemic area. On the vascular level, we observed 2 types of responses: some mice showed spreading hyperemia confined to the penumbra area (penumbral spreading hyperemia) while other showed spreading hyperemia propagating in the full hemisphere (full hemisphere spreading hyperemia). Penumbral spreading hyperemia was associated with severe stroke-induced damage, while full hemisphere spreading hyperemia indicated beneficial infarct outcome and potential viability of the infarct core. In all animals, thrombolysis with r-tPA modified the shape of the vascular response to CSD and reduced lesion volume. CONCLUSIONS: Our results show that different types of spreading hyperemia occur spontaneously after the onset of ischemia. Depending on their shape and distribution, they predict severity of injury and outcome. Furthermore, our data show that modulating the hemodynamic response to CSD may be a promising therapeutic strategy to attenuate stroke outcome.


Asunto(s)
Depresión de Propagación Cortical , Hiperemia , Accidente Cerebrovascular , Animales , Circulación Cerebrovascular , Depresión de Propagación Cortical/fisiología , Humanos , Infarto , Ratones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico
3.
Cell Rep ; 33(2): 108260, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053341

RESUMEN

Despite successful clot retrieval in large vessel occlusion stroke, ∼50% of patients have an unfavorable clinical outcome. The mechanisms underlying this functional reperfusion failure remain unknown, and therapeutic options are lacking. In the thrombin-model of middle cerebral artery (MCA) stroke in mice, we show that, despite successful thrombolytic recanalization of the proximal MCA, cortical blood flow does not fully recover. Using in vivo two-photon imaging, we demonstrate that this is due to microvascular obstruction of ∼20%-30% of capillaries in the infarct core and penumbra by neutrophils adhering to distal capillary segments. Depletion of circulating neutrophils using an anti-Ly6G antibody restores microvascular perfusion without increasing the rate of hemorrhagic complications. Strikingly, infarct size and functional deficits are smaller in mice treated with anti-Ly6G. Thus, we propose neutrophil stalling of brain capillaries to contribute to reperfusion failure, which offers promising therapeutic avenues for ischemic stroke.


Asunto(s)
Isquemia Encefálica/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Capilares/patología , Neutrófilos/patología , Fenómeno de no Reflujo/fisiopatología , Accidente Cerebrovascular/fisiopatología , Animales , Anticuerpos/metabolismo , Antígenos Ly , Conducta Animal , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Arteria Cerebral Media/patología , Arteria Cerebral Media/fisiopatología , Fenómeno de no Reflujo/patología , Trombina
4.
Front Mol Neurosci ; 13: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670017

RESUMEN

Increasing evidence from animal and human studies indicate that exposure to nicotine during development, separated from the effects of smoking tobacco, can contribute to dysregulation of brain development including behavioral deficits. An RNAseq study of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5 and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous functional receptor isoform expressed in the adult brain. They exhibited correlated expression in both RNAseq samples, and in tissue sections by in situ hybridization. Co-localization studies with other cortical markers suggest they are pre-dominantly expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences do express these sub-units. CHNRA5 also showed moderate levels of expression and again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but detectable levels of expression. CHRN genes found not to be expressed included genes for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle specific gene expression was detected, for instance CHNRB1. Although there is little or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine may have a paracrine effect on radially migrating cortical neurons and GABAergic interneuron progenitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...