Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Ecol ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305931

RESUMEN

Intercropping is drawing increasing attention as a strategy to increase crop yields and manage pest pressure, however the mechanisms of associational resistance in diversified cropping systems remain controversial. We conducted a controlled experiment to assess the impact of co-planting with silverleaf Desmodium (Desmodium uncinatum) on maize secondary metabolism and resistance to herbivory by the spotted stemborer (Chilo partellus). Maize plants were grown either in the same pot with a Desmodium plant or adjacent to it in a separate pot. Our findings indicate that co-planting with Desmodium influences maize secondary metabolism and herbivore resistance through both above and below-ground mechanisms. Maize growing in the same pot with a Desmodium neighbor was less attractive for oviposition by spotted stemborer adults. However, maize exposed only to above-ground Desmodium cues generally showed increased susceptibility to spotted stemborer herbivory (through both increased oviposition and larval consumption). VOC emissions and tissue secondary metabolite titers were also altered in maize plants exposed to Desmodium cues, with stronger effects being observed when maize and Desmodium shared the same pot. Specifically, benzoxazinoids were strongly suppressed in maize roots by direct contact with a Desmodium neighbor while headspace emissions of short-chain aldehydes and alkylbenzenes were increased. These results imply that direct root contact or soil-borne cues play an important role in mediating associational effects on plant resistance in this system.

2.
J Econ Entomol ; 114(5): 1934-1949, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34505143

RESUMEN

The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.


Asunto(s)
Bacillus thuringiensis , Animales , Bacillus thuringiensis/genética , Endotoxinas , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genética , Sudáfrica , Spodoptera , Estados Unidos , Zea mays/genética
3.
Plants (Basel) ; 10(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670637

RESUMEN

The fall armyworm (FAW) has recently invaded and become an important pest of maize in Africa causing yield losses reaching up to a third of maize annual production. The present study evaluated different aspects of resistance of six maize cultivars, cropped by farmers in Kenya, to FAW larvae feeding under laboratory and field conditions. We assessed the arrestment and feeding of FAW neonate larvae in no-choice and choice experiments, development of larvae-pupae, food assimilation under laboratory conditions and plant damage in a field experiment. We did not find complete resistance to FAW feeding in the evaluated maize cultivars, but we detected differences in acceptance and preference when FAW larvae were given a choice between certain cultivars. Moreover, the smallest pupal weight and the lowest growth index were found on 'SC Duma 43' leaves, which suggests an effect of antibiosis of this maize hybrid against FAW larvae. In contrast, the highest growth index was recorded on 'Rachar' and the greatest pupal weight was found on 'Nyamula' and 'Rachar'. The density of trichomes on the leaves of these maize cultivars seems not to be directly related to the preference of neonates for feeding. Plant damage scores were not statistically different between cultivars in the field neither under natural nor artificial infestation. However, plant damage scores in 'Nyamula' and 'Jowi' tended to be lower in the two last samplings of the season compared to the two initial samplings under artificial infestation. Our study provides insight into FAW larval preferences and performance on some African maize cultivars, showing that there are differences between cultivars in these variables; but high levels of resistance to larvae feeding were not found.

4.
Pest Manag Sci ; 77(5): 2350-2357, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421266

RESUMEN

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is a serious pest of maize. Farming systems such as push-pull or maize-legume intercropping have been reported to reduce FAW infestations significantly. However, the exact mechanisms involved in FAW management have not been practically elucidated. We therefore assessed larval host preference, feeding and survival rate when exposed to four host plants commonly used in push-pull and legume intercropping. We also compared adult moths' oviposition preference between maize and other grasses used as trap crops in push-pull. RESULTS: The larval orientation and settlement study showed that maize was the most preferred host plant followed by bean, desmodium and Brachiaria brizantha cv Mulato II. The larval arrest and dispersal experiment showed that mean number of larvae was significantly higher on maize than on Desmodium or B. brizantha cv Mulato II. However, no significant differences were found between maize and bean after 24 h. Maize was the most consumed plant, followed by bean, desmodium and finally brachiaria. The mean percentage of survival to the pupation stage was significantly higher on maize. The study on FAW oviposition preference showed no significant differences in egg deposited between maize and other grasses. However, B. brizantha cv Xaraes, which received more eggs than maize, could be a promising alternative to B. brizantha cv Mulato II for the control of FAW. CONCLUSION: The study provides a better understanding of the mechanisms involved in the control of fall armyworm under the push-pull and maize legume intercropping. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Brachiaria , Phaseolus , África , Animales , Femenino , Larva , Spodoptera , Zea mays
5.
Sci Rep ; 10(1): 11205, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641801

RESUMEN

Tritrophic interactions allow plants to recruit natural enemies for protection against herbivory. Here we investigated genetic variability in induced responses to stemborer egg-laying in maize Zea mays (L.) (Poaceae). We conducted a genome wide association study (GWAS) of 146 maize genotypes comprising of landraces, inbred lines and commercial hybrids. Plants were phenotyped in bioassays measuring parasitic wasp Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) attraction to volatiles collected from plants exposed to stemborer Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) eggs. Genotyping-by-sequencing was used to generate maize germplasm SNP data for GWAS. The egg-induced parasitoid attraction trait was more common in landraces than in improved inbred lines and hybrids. GWAS identified 101 marker-trait associations (MTAs), some of which were adjacent to genes involved in the JA-defence pathway (opr7, aos1, 2, 3), terpene biosynthesis (fps3, tps2, 3, 4, 5, 7, 9, 10), benzoxazinone synthesis (bx7, 9) and known resistance genes (e.g. maize insect resistance 1, mir1). Intriguingly, there was also association with a transmembrane protein kinase that may function as a receptor for the egg elicitor and other genes implicated in early plant defence signalling. We report maize genomic regions associated with indirect defence and provide a valuable resource for future studies of tritrophic interactions in maize. The markers identified may facilitate selection of indirect defence by maize breeders.


Asunto(s)
Mariposas Nocturnas/anatomía & histología , Defensa de la Planta contra la Herbivoria/genética , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología , Zea mays/fisiología , Animales , Ciclopentanos/metabolismo , Estudio de Asociación del Genoma Completo , Herbivoria/fisiología , Mariposas Nocturnas/parasitología , Mariposas Nocturnas/fisiología , Oviposición , Oxilipinas/metabolismo , Semillas/genética , Semillas/metabolismo , Zea mays/parasitología
6.
J Chem Ecol ; 45(11-12): 982-992, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31784860

RESUMEN

Plants have evolved intricate defence strategies against herbivore attack which can include activation of defence in response to stress-related volatile organic compounds (VOCs) emitted by neighbouring plants. VOCs released by intact molasses grass (Melinis minutiflora), have been shown to repel stemborer, Chilo partellus (Swinhoe), from maize and enhance parasitism by Cotesia sesamiae (Cameron). In this study, we tested whether the molasses grass VOCs have a role in plant-plant communication by exposing different maize cultivars to molasses grass for a 3-week induction period and then observing insect responses to the exposed plants. In bioassays, C. partellus preferred non-exposed maize landrace plants for egg deposition to those exposed to molasses grass. Conversely, C. sesamiae parasitoid wasps preferred volatiles from molasses grass exposed maize landraces compared to volatiles from unexposed control plants. Interestingly, the molasses grass induced defence responses were not observed on hybrid maize varieties tested, suggesting that the effect was not simply due to absorption and re-emission of VOCs. Chemical and electrophysiological analyses revealed strong induction of bioactive compounds such as (R)-linalool, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene from maize landraces exposed to molasses grass volatiles. Our results suggest that constitutively emitted molasses grass VOCs can induce direct and indirect defence responses in neighbouring maize landraces. Plants activating defences by VOC exposure alone could realize enhanced levels of resistance and fitness compared to those that launch defence responses upon herbivore attack. Opportunities for exploiting plant-plant signalling to develop ecologically sustainable crop protection strategies against devastating insect pests such as stemborer C. partellus are discussed.


Asunto(s)
Compuestos Orgánicos Volátiles/química , Zea mays/metabolismo , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Animales , Productos Agrícolas , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Herbivoria , Interacciones Huésped-Parásitos , Melaza , Mariposas Nocturnas/parasitología , Oviposición/efectos de los fármacos , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología , Zea mays/parasitología
7.
Food Sci Nutr ; 7(7): 2291-2301, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31367357

RESUMEN

Consumption of maize contaminated with mycotoxins has been associated with detrimental health effects. A farm survey covering 116 push-pull and 139 non-push-pull cropping systems was conducted to determine the socio-economic and agronomic factors that influence farmers' knowledge on incidence and contamination of maize by ear rots and associated mycotoxins in western Kenya. All the respondents were smallholder farmers between the ages of 23 and 80 years, with 50% of them being female. Maize samples were collected from the standing crop in the field of each interviewed farmer and analyzed for aflatoxin and fumonisin. Only a small proportion of farmers had knowledge of aflatoxin and ear rots in maize. Overall, less than 20% of maize samples were contaminated with both aflatoxin and fumonisin, and more maize samples were contaminated with fumonisin as compared to aflatoxin. Proportions of maize samples containing higher than the acceptable Kenyan regulatory threshold (10 µg/kg) for aflatoxin and European Commission regulatory threshold (1,000) µg/kg for fumonisin were lower in maize samples from push-pull cropping system. Age of farmer and county of residence were significantly and positively associated with knowledge of aflatoxin, while cropping system, county of residence, and level of education were positively associated with knowledge of maize ear rots. There was strong correlation between knowledge of maize ear rots and knowledge of aflatoxin. Levels of both aflatoxin and fumonisin were significantly and positively associated with the use of diammonium phosphate (DAP) fertilizer at planting. Aflatoxin levels were also positively associated with stemborer damage. Agronomic practices were not significantly different between push-pull and non-push-pull farmers. However, use of DAP fertilizer was the most important agronomic factor since it was associated with both aflatoxin and fumonisin contamination of maize. These results imply that creating awareness is key to mitigation of ear rots and mycotoxin contamination of maize. The results also suggest that the levels of aflatoxin and fumonisin in maize in western Kenya were influenced both by pre-harvest agronomic practices and by the cropping system adopted, push-pull or not.

8.
Pest Manag Sci ; 75(9): 2346-2352, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31166075

RESUMEN

The entire process of agricultural and horticultural food production is unsustainable as practiced by current highly intensive industrial systems. Energy consumption is particularly intensive for cultivation, and for fertilizer production and its incorporation into soil. Provision of nitrogen contributes a major source of the greenhouse gas, N2 O. All losses due to pests, diseases and weeds are of food for which the carbon footprint has already been committed and so crop protection becomes an even greater concern. The rapidly increasing global need for food and the aggravation of associated problems by the effects of climate change create a need for new and sustainable crop protection. The overall requirement for sustainability is to remove seasonal inputs, and consequently all crop protection will need to be delivered via the seed or other planting material. Although genetic modification (GM) has transformed the prospects of sustainable crop protection, considerably more development is essential for the realisation of the full potential of GM and thereby consumer acceptability. Secondary plant metabolism offers wider and perhaps more robust new crop protection via GM and can be accomplished without associated yield loss because of the low level of photosynthate diverted for plant defence by secondary metabolism. Toxic mechanisms can continue to be targeted but exploiting non-toxic regulatory and signalling mechanisms should be the ultimate objective. There are many problems facing these proposals, both technical and social, and these are discussed but it is certainly not possible to stay where we are in terms of sustainability. The evidence for success is mounting and the technical opportunities from secondary plant metabolism are discussed here. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Producción de Cultivos/métodos , Productos Agrícolas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Metabolismo Secundario , Productos Agrícolas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
9.
J Environ Manage ; 243: 318-330, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31102899

RESUMEN

Fall armyworm (FAW), a voracious agricultural pest native to North and South America, was first detected on the African continent in 2016 and has subsequently spread throughout the continent and across Asia. It has been predicted that FAW could cause up to $US13 billion per annum in crop losses throughout sub-Saharan Africa, thereby threatening the livelihoods of millions of poor farmers. In their haste to respond to FAW governments may promote indiscriminate use of chemical pesticides which, aside from human health and environmental risks, could undermine smallholder pest management strategies that depend to a large degree on natural enemies. Agro-ecological approaches offer culturally appropriate low-cost pest control strategies that can be readily integrated into existing efforts to improve smallholder incomes and resilience through sustainable intensification. Such approaches should therefore be promoted as a core component of integrated pest management (IPM) programmes for FAW in combination with crop breeding for pest resistance, classical biological control and selective use of safe pesticides. Nonetheless, the suitability of agro-ecological measures for reducing FAW densities and impact need to be carefully assessed across varied environmental and socio-economic conditions before they can be proposed for wide-scale implementation. To support this process, we review evidence for the efficacy of potential agro-ecological measures for controlling FAW and other pests, consider the associated risks, and draw attention to critical knowledge gaps. The evidence indicates that several measures can be adopted immediately. These include (i) sustainable soil fertility management, especially measures that maintain or restore soil organic carbon; (ii) intercropping with appropriately selected companion plants; and (iii) diversifying the farm environment through management of (semi)natural habitats at multiple spatial scales. Nevertheless, we recommend embedding trials into upscaling programmes so that the costs and benefits of these interventions may be determined across the diverse biophysical and socio-economic contexts that are found in the invaded range.


Asunto(s)
Ecología , Control de Plagas , Agricultura , Animales , Asia , Humanos , América del Sur , Spodoptera
10.
Crop Prot ; 98: 94-101, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28775391

RESUMEN

The parasitic weed Striga hermonthica Benth. (Orobanchaceae), commonly known as striga, is an increasingly important constraint to cereal production in sub-Saharan Africa (SSA), often resulting in total yield losses in maize (Zea mays L.) and substantial losses in sorghum (Sorghum bicolor (L.) Moench). This is further aggravated by soil degradation and drought conditions that are gradually becoming widespread in SSA. Forage legumes in the genus Desmodium (Fabaceae), mainly D. uncinatum and D. intortum, effectively control striga and improve crop productivity in SSA. However, negative effects of climate change such as drought stress is affecting the functioning of these systems. There is thus a need to identify and characterize new plants possessing the required ecological chemistry to protect crops against the biotic stress of striga under such environmental conditions. 17 accessions comprising 10 species of Desmodium were screened for their drought stress tolerance and ability to suppress striga. Desmodium incanum and D. ramosissimum were selected as the most promising species as they retained their leaves and maintained leaf function for longer periods during their exposure to drought stress conditions. They also had desirable phenotypes with more above ground biomass. The two species suppressed striga infestation, both under controlled and field conditions, and resulted in significant grain yield increases, demonstrating the incremental capability of Desmodium species in striga suppression. These results demonstrate beneficial effects of Desmodium species in enhancing cereal productivity in dry areas.

11.
Mol Cell Probes ; 35: 44-56, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647581

RESUMEN

Napier grass Stunt Disease (NSD) is a severe disease of Napier grass (Pennisetum purpureum) in Eastern Africa, caused by the leafhopper-transmitted bacterium Candidatus Phytoplasma oryzae. The pathogen severely impairs the growth of Napier grass, the major fodder for dairy cattle in Eastern Africa. NSD is associated with biomass losses of up to 70% of infected plants. Diagnosis of NSD is done by nested PCR targeting the phytoplasma DNA, which is difficult to perform in developing countries with little infrastructure. We report the development of an easy to use, rapid, sensitive and specific molecular assay for field diagnosis of NSD. The procedure is based on recombinase polymerase amplification and targets the imp gene encoding a pathogen-specific immunodominant membrane protein. Therefore we followed a two-step process. First we developed an isothermal DNA amplification method for real time fluorescence application and then transferred this assay to a lateral flow format. The limit of detection for both procedures was estimated to be 10 organisms. We simplified the template preparation procedure by using freshly squeezed phloem sap from Napier grass. Additionally, we developed a laboratory serological assay with the potential to be converted to a lateral flow assay. Two murine monoclonal antibodies with high affinity and specificity to the immunodominant membrane protein IMP of Candidatus Phytoplasma oryzae were generated. Both antibodies specifically reacted with the denatured or native 17 kDa IMP protein. In dot blot experiments of extracts from infected plant, phytoplasmas were detected in as little as 12,5 µg of fresh plant material.


Asunto(s)
Phytoplasma/genética , Técnicas de Amplificación de Ácido Nucleico , Phytoplasma/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
12.
Ecol Evol ; 7(8): 2835-2845, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28428873

RESUMEN

Maize (Zea mays) emits volatile terpenes in response to insect feeding and egg deposition to defend itself against harmful pests. However, maize cultivars differ strongly in their ability to produce the defense signal. To further understand the agroecological role and underlying genetic mechanisms for variation in terpene emission among maize cultivars, we studied the production of an important signaling component (E)-caryophyllene in a South American maize landrace Braz1006 possessing stemborer Chilo partellus egg inducible defense trait, in comparison with the European maize line Delprim and North American inbred line B73. The (E)-caryophyllene production level and transcript abundance of TPS23, terpene synthase responsible for (E)-caryophyllene formation, were compared between Braz1006, Delprim, and B73 after mimicked herbivory. Braz1006-TPS23 was heterologously expressed in E. coli, and amino acid sequences were determined. Furthermore, electrophysiological and behavioral responses of a key parasitic wasp Cotesia sesamiae to C. partellus egg-induced Braz1006 volatiles were determined using coupled gas chromatography electroantennography and olfactometer bioassay studies. After elicitor treatment, Braz1006 released eightfold higher (E)-caryophyllene than Delprim, whereas no (E)-caryophyllene was detected in B73. The superior (E)-caryophyllene production by Braz1006 was positively correlated with high transcript levels of TPS23 in the landrace compared to Delprim. TPS23 alleles from Braz1006 showed dissimilarities at different sequence positions with Delprim and B73 and encodes an active enzyme. Cotesia sesamiae was attracted to egg-induced volatiles from Braz1006 and synthetic (E)-caryophyllene. The variation in (E)-caryophyllene emission between Braz1006 and Delprim is positively correlated with induced levels of TPS23 transcripts. The enhanced TPS23 activity and corresponding (E)-caryophyllene production by the maize landrace could be attributed to the differences in amino acid sequence with the other maize lines. This study suggested that the same analogous genes could have contrasting expression patterns in different maize genetic backgrounds. The current findings provide valuable insight not only into genetic mechanisms underlying variation in defense signal production but also the prospect of introgressing the novel defense traits into elite maize varieties for effective and ecologically sound protection of crops against damaging insect pests.

13.
New Phytol ; 214(3): 1267-1280, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28191641

RESUMEN

The parasitic weeds Striga asiatica and Striga hermonthica cause devastating yield losses to upland rice in Africa. Little is known about genetic variation in host resistance and tolerance across rice genotypes, in relation to virulence differences across Striga species and ecotypes. Diverse rice genotypes were phenotyped for the above traits in S. asiatica- (Tanzania) and S. hermonthica-infested fields (Kenya and Uganda) and under controlled conditions. New rice genotypes with either ecotype-specific or broad-spectrum resistance were identified. Resistance identified in the field was confirmed under controlled conditions, providing evidence that resistance was largely genetically determined. Striga-resistant genotypes contributed to yield security under Striga-infested conditions, although grain yield was also determined by the genotype-specific yield potential and tolerance. Tolerance, the physiological mechanism mitigating Striga effects on host growth and physiology, was unrelated to resistance, implying that any combination of high, medium or low levels of these traits can be found across rice genotypes. Striga virulence varies across species and ecotypes. The extent of Striga-induced host damage results from the interaction between parasite virulence and genetically determined levels of host-plant resistance and tolerance. These novel findings support the need for predictive breeding strategies based on knowledge of host resistance and parasite virulence.


Asunto(s)
Adaptación Fisiológica , Cruzamiento , Variación Genética , Interacciones Huésped-Parásitos , Oryza/parasitología , Striga/genética , África , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Resistencia a la Enfermedad , Ecosistema , Ecotipo , Genotipo , Oryza/anatomía & histología , Oryza/fisiología , Fenotipo , Fotosíntesis , Enfermedades de las Plantas/parasitología , Carácter Cuantitativo Heredable , Lluvia , Especificidad de la Especie
14.
J Chem Ecol ; 42(7): 689-97, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27392788

RESUMEN

Lepidopterous stemborers, and parasitic striga weeds belonging to the family Orobanchaceae, attack cereal crops in sub-Saharan Africa causing severe yield losses. The smallholder farmers are resource constrained and unable to afford expensive chemicals for crop protection. The push-pull technology, a chemical ecology- based cropping system, is developed for integrated pest and weed management in cereal-livestock farming systems. Appropriate plants were selected that naturally emit signaling chemicals (semiochemicals). Plants highly attractive for stemborer egg laying were selected and employed as trap crops (pull), to draw pests away from the main crop. Plants that repelled stemborer females were selected as intercrops (push). The stemborers are attracted to the trap plant, and are repelled from the main cereal crop using a repellent intercrop (push). Root exudates of leguminous repellent intercrops also effectively control the parasitic striga weed through an allelopathic mechanism. Their root exudates contain flavonoid compounds some of which stimulate germination of Striga hermonthica seeds, such as Uncinanone B, and others that dramatically inhibit their attachment to host roots, such as Uncinanone C and a number of di-C-glycosylflavones (di-CGFs), resulting in suicidal germination. The intercrop also improves soil fertility through nitrogen fixation, natural mulching, improved biomass, and control of erosion. Both companion plants provide high value animal fodder, facilitating milk production and diversifying farmers' income sources. The technology is appropriate to smallholder mixed cropping systems in Africa. Adopted by about 125,000 farmers to date in eastern Africa, it effectively addresses major production constraints, significantly increases maize yields, and is economical as it is based on locally available plants, not expensive external inputs.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Control de Plagas/métodos , Agricultura , Animales , Cambio Climático , Feromonas/farmacología
15.
PLoS One ; 11(7): e0158744, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27392034

RESUMEN

Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs). These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L.) volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)) and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae)) parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS) was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E)-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and C. sesamiae parasitic wasps indicated that these parasitoids preferred volatiles from oviposited and neighbouring landrace plants compared to those from the control plants. This effect was absent in the standard commercial hybrid we tested. There was no HIPV induction and no difference in parasitoid attraction in neighbouring and control hybrid maize plants. These results show plant-plant signalling: 'Nyamula' maize plants emitting oviposition-induced volatiles attractive to the herbivore's natural enemies can induce this indirect defence trait in conspecific neighbouring undamaged maize plants. Maize plants growing in a field may thus benefit from this indirect defence through airborne signalling which may enhance the fitness of the volatile-emitting plant by increasing predation pressure on herbivores.


Asunto(s)
Compuestos Orgánicos Volátiles/química , Avispas/patogenicidad , Zea mays/química , Zea mays/parasitología , Animales , Cromatografía de Gases y Espectrometría de Masas , Oviposición/fisiología , Aceites de Plantas/química
16.
Genome Announc ; 4(2)2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27103722

RESUMEN

Phytoplasmas are bacterial plant pathogens with devastating impact on agricultural production worldwide. In eastern Africa, Napier grass stunt disease causes serious economic losses in the smallholder dairy industry. This draft genome sequence of " ITALIC! CandidatusPhytoplasma oryzae" strain Mbita1 provides insight into its genomic organization and the molecular basis of pathogenicity.

17.
Plant Dis ; 100(1): 108-115, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30688571

RESUMEN

Plant-pathogenic phytoplasmas found in wild grasses in East Africa could pose a serious threat to the cultivation of Napier grass, Pennisetum purpureum, the most important livestock fodder in the region. To asses this threat, leaves from plants of 33 grass species were sampled from Mbita, Bungoma, and Busia districts in western Kenya; Tarime district in northern Tanzania; and Busia and Bugiri districts in the eastern Uganda to determine which species host phytoplasmas, the identity of the phytoplasmas, and their relationship with disease symptoms. Phytoplasmas were detected using universal primers based on conserved phytoplasma-specific 16S rDNA sequences from 11 grass species collected. Sequence and phylogenetic analysis revealed the presence of Napier grass stunt-related phytoplasmas in 11 grass species, 'Candidatus Phytoplasma cynodontis' in three, and goosegrass white leaf phytoplasma in 2 wild grass species. This study showed that the geographical distribution, diversity of phytoplasmas, and their grass host species in East Africa is greater than antecedently thought and that typical disease symptoms, including white leaf or stunting alone, are not reliable indicators of the presence of phytoplasma. It also shows the need to identify insect vectors responsible for phytoplasma transmission from native grasses to Napier grass or other cereals present in the region.

18.
Org Biomol Chem ; 13(48): 11663-73, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26478440

RESUMEN

The allelopathic root exudate of the drought-tolerant subsistence cereal intercrop D. incanum, protecting against the parasitic weed Striga hermonthica, comprises a number of di-C-glycosylflavones specifically containing C-glucosyl, C-galactosyl and C-arabinosyl moieties. Here we demonstrate that the biosynthesis of all compounds containing a C-glucose involves C-glucosylation of 2-hydroxynaringenin with subsequent C-galactosylation, C-glucosylation or C-arabinosylation. In addition, the crude soluble enzyme extract converts two fluorinated 2-hydroxyflavanone analogues to corresponding mono- and di-C-glycosylflavones demonstrating that some differences in C-ring substitution can be tolerated by the plant enzymes. Elucidating the biosynthesis of these C-glycosylflavones (CGFs) has the potential to open up opportunities for transferring the enzymic and genetic basis for the S. hermonthica inhibiting allelopathic trait to food crop plants.


Asunto(s)
Alelopatía , Fabaceae/química , Flavonas/biosíntesis , Flavonas/química , Raíces de Plantas/química , Glicosilación , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray
19.
Field Crops Res ; 170: 83-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26089591

RESUMEN

The parasitic weeds Striga asiatica and Striga hermonthica cause high yield losses in rain-fed upland rice in Africa. Two resistance classes (pre- and post-attachment) and several resistant genotypes have been identified among NERICA (New Rice for Africa) cultivars under laboratory conditions (in vitro) previously. However, little is known about expression of this resistance under field conditions. Here we investigated (1) whether resistance exhibited under controlled conditions would express under representative Striga-infested field conditions, and (2) whether NERICA cultivars would achieve relatively good grain yields under Striga-infested conditions. Twenty-five rice cultivars, including all 18 upland NERICA cultivars, were screened in S. asiatica-infested (in Tanzania) and S. hermonthica-infested (in Kenya) fields during two seasons. Additionally, a selection of cultivars was tested in vitro, in mini-rhizotron systems. For the first time, resistance observed under controlled conditions was confirmed in the field for NERICA-2, -5, -10 and -17 (against S. asiatica) and NERICA-1 to -5, -10, -12, -13 and -17 (against S. hermonthica). Despite high Striga-infestation levels, yields of around 1.8 t ha-1 were obtained with NERICA-1, -9 and -10 (in the S. asiatica-infested field) and around 1.4 t ha-1 with NERICA-3, -4, -8, -12 and -13 (in the S. hermonthica-infested field). In addition, potential levels of tolerance were identified in vitro, in NERICA-1, -17 and -9 (S. asiatica) and in NERICA-1, -17 and -10 (S. hermonthica). These findings are highly relevant to rice agronomists and breeders and molecular geneticists working on Striga resistance. In addition, cultivars combining broad-spectrum resistance with good grain yields in Striga-infested fields can be recommended to rice farmers in Striga-prone areas.

20.
J Chem Ecol ; 41(4): 323-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25943860

RESUMEN

Maize, a genetically diverse crop, is the domesticated descendent of its wild ancestor, teosinte. Recently, we have shown that certain maize landraces possess a valuable indirect defense trait not present in commercial hybrids. Plants of these landraces release herbivore-induced plant volatiles (HIPVs) that attract both egg [Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)] and larval [Cotesia sesamiae Cameron (Hymenoptera: Braconidae)] parasitoids in response to stemborer egg deposition. In this study, we tested whether this trait also exists in the germplasm of wild Zea species. Headspace samples were collected from plants exposed to egg deposition by Chilo partellus Swinhoe (Lepidoptera: Crambidae) moths and unexposed control plants. Four-arm olfactometer bioassays with parasitic wasps, T. bournieri and C. sesamiae, indicated that both egg and larval parasitoids preferred HIPVs from plants with eggs in four of the five teosinte species sampled. Headspace samples from oviposited plants released higher amounts of EAG-active compounds such as (E)-4,8-dimethyl-1,3,7-nonatriene. In oviposition choice bioassays, plants without eggs were significantly preferred for subsequent oviposition by moths compared to plants with prior oviposition. These results suggest that this induced indirect defence trait is not limited to landraces but occurs in wild Zea species and appears to be an ancestral trait. Hence, these species possess a valuable trait that could be introgressed into domesticated maize lines to provide indirect defense mechanisms against stemborers.


Asunto(s)
Mariposas Nocturnas/fisiología , Oviposición , Feromonas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología , Zea mays/química , Animales , Femenino , Interacciones Huésped-Parásitos , Mariposas Nocturnas/parasitología , Olfatometría , Percepción Olfatoria , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...