Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 712, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759605

RESUMEN

Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.


Asunto(s)
Ecosistema , Plantas , Europa (Continente) , Semillas
2.
Microb Ecol ; 86(2): 1071-1081, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36180621

RESUMEN

Heavy metal (HM) accumulation in soil affects plants and soil fauna, yet the effect on microbial alpha-diversity remains unclear, mainly due to the absence of dedicated research synthesis (e.g. meta-analysis). Here, we report the first meta-analysis of the response of soil microbial alpha-diversity to the experimental addition of cadmium (Cd) and copper (Cu). We considered studies conducted between 2013 and 2022 using DNA metabarcoding of bacterial and fungal communities to overcome limitations of other cultivation- and electrophoresis-based techniques. Fungi were discarded due to the limited study number (i.e. 6 studies). Bacterial studies resulted in 66 independent experiments reported in 32 primary papers from four continents. We found a negative dose-dependent response for Cu but not for Cd for bacterial alpha-diversity in the environments, only for Cu additions exceeding 29.6 mg kg-1 (first loss of - 0.06% at 30 mg kg-1). The maximal loss of bacterial alpha-diversity registered was 13.89% at 3837 mg kg-1. Our results first highlight that bacterial communities behave differently to soil pollution depending on the metal. Secondly, our study suggests that even extreme doses of Cu do not cause a dramatic loss in alpha-diversity, highlighting how the behaviour of bacterial communities diverges from soil macro-organisms.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cobre/análisis , Cadmio , Suelo , Contaminantes del Suelo/análisis , Microbiología del Suelo , Metales Pesados/análisis , Bacterias/genética
3.
Sci Rep ; 12(1): 1398, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082360

RESUMEN

Climate change is expected to threaten endemic plants in the Alps. In this context, the factors that may modulate species responses are rarely investigated at a local scale. We analyzed eight alpine narrow endemics of the Dolomites (southeastern Alps) under different predicted climate change scenarios at fine spatial resolutions. We tested possible differences in elevation, topographic heterogeneity and velocity of climate change among areas of gained, lost, or stable climatic habitat. The negative impact of climate change ranged from moderate to severe, depending on scenario and species. Generally, range loss occurred at the lowest elevations, while gained and stable areas were located at highest elevations. For six of the species, climate change velocity had higher values in stable and gained areas than in lost ones. Our findings support the role of topographic heterogeneity in maintaining climatic microrefugia, however, the peculiar topography of the Dolomites, characterized by high altitude plateaus, resulted in high climate change velocity in areas of projected future climatic suitability. Our study supports the usefulness of multiple predictors of spatio-temporal range dynamics for regional climate-adapted management and eventual assisted colonization planning to not overlook or overestimate the potential impact of climate change locally.

4.
Sci Total Environ ; 764: 142888, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33131863

RESUMEN

Functional traits of mountain grassland communities strongly depend upon temperature variation along elevational gradients. However, little is known to what degree the direction of such trait-temperature relationships is shaped by other environmental factors or land-use types. Here, we investigated context-dependent patterns of plant functional trait variation in alpine grassland communities. Specifically, we tested whether temperature (degree-days) variation along an elevational gradient, interacts with water availability, soil properties and land-use type to moderate such patterns. We used cover-abundance and plant-trait data from 236 grassland relevés of the Swiss Alps along an elevational range of 500-2400 m a.s.l. with plant traits being specific leaf area (L), seed releasing height (H) and seed mass (S). We used indices capturing different dimensions of plant functional diversity as response variables, i.e. community weighted mean (CWM), trait range (TR) and functional dispersion (FDis). Land-use type and water availability interacted significantly with degree-days determining the responses of multiple plant traits community attributes. Specific leaf area (CWML) and seed releasing height (CWMH) increased with temperature in meadows and pastures, while no significant trend was detected in fallows. In meadows, seed mass (CWMS) increased and was at the same time less constrained (higher TRS) with increasing temperature. In pastures and fallows, by contrast, no seed trait-temperature trends were detected. In addition, water availability interacted with increasing temperature affecting functional dispersion: FDisL decreased only in sites with higher site water balance and TRS and FDisS increased in sites with low mean summer precipitation. Our findings suggest that functional diversity of grasslands might respond to climate warming with strong ecological differences depending on land-use types and water availability. Based on our results, managed meadows and pastures most likely change in direction to species with more acquisitive strategies, whereas in fallows, no specific trajectory of change is expected.


Asunto(s)
Biodiversidad , Pradera , Suiza , Temperatura , Agua
5.
Glob Chang Biol ; 25(7): 2485-2498, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31056841

RESUMEN

Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta-analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho-ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13 C). We found LMA, Narea, Nmass and δ13 C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13 C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross-species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.


Asunto(s)
Ecosistema , Hojas de la Planta , Ambiente , Fenotipo , Fósforo
6.
Environ Pollut ; 242(Pt B): 1787-1799, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30115529

RESUMEN

Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.


Asunto(s)
Bosques , Nitrógeno/análisis , Biodiversidad , Ecosistema , Ciclo del Nitrógeno , Plantas , Suelo , Árboles/crecimiento & desarrollo
7.
Glob Chang Biol ; 24(4): 1722-1740, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29271579

RESUMEN

The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.


Asunto(s)
Biodiversidad , Plantas/clasificación , Clima , Europa (Continente) , Bosques , Actividades Humanas , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...