Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Photoacoustics ; 38: 100604, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38559568

RESUMEN

In this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) - providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm-1Hz-0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field.

2.
Antioxidants (Basel) ; 13(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38397770

RESUMEN

Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.

3.
STAR Protoc ; 5(1): 102808, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38170664

RESUMEN

Here, we present a protocol for using Early Data Visualization Script, a user-friendly software tool to visualize complex volatile metabolomics data in clinical setups. We describe steps for tabulating data and adjusting visual output to visualize complex time-resolved volatile omics data using simple charts and graphs. We then demonstrate possible modifications by detailing procedures for the adaptation of four basic functions. For complete details on the use and execution of this protocol, please refer to Sukul et al. (2022)1 and Remy et al. (2022).2.


Asunto(s)
Visualización de Datos , Metabolómica , Programas Informáticos
4.
Nutrients ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068807

RESUMEN

Pediatric short bowel syndrome (SBS) is a rare condition characterized by a massive loss of the small intestine, leading to the inability to meet nutritional requirements without the use of parenteral or enteral supplementation. SBS causes profound alterations in the intestinal microbiome and metabolome. The aim of this study was a detailed assessment of the intestinal microbiome and metabolome in a murine model of SBS. We performed a 60% proximal small bowel resection versus a sham operation in C57BL/6 mice. Four weeks postoperatively, the microbial communities of different intestinal segments (jejunum, ileum, colon) and stool were assessed by 16S rRNA gene sequencing. Bile acids in serum and stool and volatile organic compounds (VOCs) in the fecal headspace were assessed using LC-MS and GC-MS techniques. The α-diversity of the different intestinal segments did not significantly differ between the two groups. ß-diversity significantly differed between sham and SBS mice. While in the jejunum, Faecalibaculum was significantly increased in SBS animals, a significant reduction in Lactobacillus and Sporosarcina was detected in the ileum of SBS mice. In the colon of SBS mice, a significant decrease in Ruminococcaceae and a significant increase in Proteobacteria such as Faecalibaculum and Escherichia-Shigella were found. Serum levels of deoxycholic, taurocholic and taurochenodeoxycholic acids were significantly higher in the SBS group. Of the 29 VOCs tested, hexane, isoflurane and pentane were significantly higher in the SBS group, and pyrrole was significantly lower. We were able to show that SBS causes shifts in the murine intestinal microbiome and metabolome including serum BAs and fecal VOCs.


Asunto(s)
Síndrome del Intestino Corto , Compuestos Orgánicos Volátiles , Humanos , Niño , Animales , Ratones , Ácidos y Sales Biliares , Modelos Animales de Enfermedad , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Biomarcadores
5.
Commun Biol ; 6(1): 999, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777700

RESUMEN

Plants, animals and humans metabolically produce volatile isoprene (C5H8). Humans continuously exhale isoprene and exhaled concentrations differ under various physio-metabolic and pathophysiological conditions. Yet unknown metabolic origin hinders isoprene to reach clinical practice as a biomarker. Screening 2000 individuals from consecutive mass-spectrometric studies, we herein identify five healthy German adults without exhaled isoprene. Whole exome sequencing in these adults reveals only one shared homozygous (European prevalence: <1%) IDI2 stop-gain mutation, which causes losses of enzyme active site and Mg2+-cofactor binding sites. Consequently, the conversion of isopentenyl diphosphate to dimethylallyl diphosphate (DMAPP) as part of the cholesterol metabolism is prevented in these adults. Targeted sequencing depicts that the IDI2 rs1044261 variant (p.Trp144Stop) is heterozygous in isoprene deficient blood-relatives and absent in unrelated isoprene normal adults. Wild-type IDI1 and cholesterol metabolism related serological parameters are normal in all adults. IDI2 determines isoprene production as only DMAPP sources isoprene and unlike plants, humans lack isoprene synthase and its enzyme homologue. Human IDI2 is expressed only in skeletal-myocellular peroxisomes and instant spikes in isoprene exhalation during muscle activity underpins its origin from muscular lipolytic cholesterol metabolism. Our findings translate isoprene as a clinically interpretable breath biomarker towards potential applications in human medicine.


Asunto(s)
Colesterol , Multiómica , Animales , Humanos , Biomarcadores
6.
Nutrients ; 15(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37630845

RESUMEN

Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.


Asunto(s)
Fármacos Antiobesidad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Masculino , Animales , Ratones , Caquexia , Tejido Adiposo , Lipólisis , Ciclofosfamida/efectos adversos , Citocinas
7.
Sci Rep ; 12(1): 17926, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289276

RESUMEN

Being the proximal matrix, breath offers immediate metabolic outlook of respiratory infections. However, high viral load in exhalations imposes higher transmission risk that needs improved methods for safe and repeatable analysis. Here, we have advanced the state-of-the-art methods for real-time and offline mass-spectrometry based analysis of exhaled volatile organic compounds (VOCs) under SARS-CoV-2 and/or similar respiratory conditions. To reduce infection risk, the general experimental setups for direct and offline breath sampling are modified. Certain mainstream and side-stream viral filters are examined for direct and lab-based applications. Confounders/contributions from filters and optimum operational conditions are assessed. We observed immediate effects of infection safety mandates on breath biomarker profiles. Main-stream filters induced physiological and analytical effects. Side-stream filters caused only systematic analytical effects. Observed substance specific effects partly depended on compound's origin and properties, sampling flow and respiratory rate. For offline samples, storage time, -conditions and -temperature were crucial. Our methods provided repeatable conditions for point-of-care and lab-based breath analysis with low risk of disease transmission. Besides breath VOCs profiling in spontaneously breathing subjects at the screening scenario of COVID-19/similar test centres, our methods and protocols are applicable for moderately/severely ill (even mechanically-ventilated) and highly contagious patients at the intensive care.


Asunto(s)
COVID-19 , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , COVID-19/diagnóstico , SARS-CoV-2 , Pruebas Respiratorias/métodos , Espiración , Biomarcadores/análisis , Monitoreo Fisiológico
8.
iScience ; 25(10): 105195, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36168390

RESUMEN

Breath volatile organics (VOCs) may provide immediate information on infection mechanisms and host response. We conducted real-time mass spectrometry-based breath profiling in 708 non-preselected consecutive subjects in the screening scenario of a COVID-19 test center. Recruited subjects were grouped based on PCR-confirmed infection status and presence or absence of flu-like symptoms. Exhaled VOC profiles of SARS-CoV-2-positive cases (n = 36) differed from healthy (n = 256) and those with other respiratory infections (n = 416). Concentrations of most VOCs were suppressed in COVID-19. VOC concentrations also differed between symptomatic and asymptomatic cases. Breath markers mirror effects of infections onto host's cellular metabolism and microbiome. Downregulation of specific VOCs was attributed to suppressive effects of SARS-CoV-2 onto gut or pulmonary microbial metabolism. Breath analysis holds potential for monitoring SARS-CoV-2 infections rather than for primary diagnosis. Breath profiling offers unconventional insight into host-virus cross-talk and infection microbiology and enables non-invasive assessment of disease manifestation.

9.
Front Physiol ; 13: 946401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035465

RESUMEN

Breath analysis was coupled with ergo-spirometry for non-invasive profiling of physio-metabolic status under exhaustive exercise. Real-time mass-spectrometry based continuous analysis of exhaled metabolites along with breath-resolved spirometry and heart rate monitoring were executed while 14 healthy adults performed ergometric ramp exercise protocol until exhaustion. Arterial blood lactate level was analyzed at defined time points. Respiratory-cardiac parameters and exhalation of several blood-borne volatiles changed continuously with the course of exercise and increasing workloads. Exhaled volatiles mirrored ventilatory and/or hemodynamic effects and depended on the origin and/or physicochemical properties of the substances. At the maximum workload, endogenous isoprene, methanethiol, dimethylsulfide, acetaldehyde, butanal, butyric acid and acetone concentrations decreased significantly by 74, 25, 35, 46, 21, 2 and 2%, respectively. Observed trends in exogenous cyclohexadiene and acetonitrile mimicked isoprene profile due to their similar solubility and volatility. Assignment of anaerobic threshold was possible via breath acetone. Breathomics enabled instant profiling of physio-metabolic effects and anaerobic thresholds during exercise. Profiles of exhaled volatiles indicated effects from muscular vasoconstriction, compartmental distribution of perfusion, extra-alveolar gas-exchange and energy homeostasis. Sulfur containing compounds and butyric acid turned out to be interesting for investigations of combined diet and exercise programs. Reproducible metabolic breath patterns have enhanced scopes of breathomics in sports science/medicine.

10.
Metabolites ; 12(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35736436

RESUMEN

Regional anaesthesia is well established as a standard method in clinical practice. Currently, the local anaesthetics of amino-amide types such as prilocaine are frequently used. Despite routine use, complications due to overdose or accidental intravenous injection can arise. A non-invasive method that can indicate such complications early would be desirable. Breath gas analysis offers great potential for the non-invasive monitoring of drugs and their volatile metabolites. The physicochemical properties of o-toluidine, the main metabolite of prilocaine, allow its detection in breath gas. Within this study, we investigated whether o-toluidine can be monitored in exhaled breath during regional anaesthesia in an animal model, if correlations between o-toluidine and prilocaine blood levels exist and if accidental intravenous injections are detectable by o-toluidine breath monitoring. Continuous o-toluidine monitoring was possible during regional anaesthesia of the cervical plexus and during simulated accidental intravenous injection of prilocaine. The time course of exhaled o-toluidine concentrations considerably differed depending on the injection site. Intravenous injection led to an immediate increase in exhaled o-toluidine concentrations within 2 min, earlier peak and higher maximum concentrations, followed by a faster decay compared to regional anaesthesia. The strength of correlation of blood and breath parameters depended on the injection site. In conclusion, real time monitoring of o-toluidine in breath gas is possible by means of PTR-ToF-MS. Since simulated accidental intravenous injection led to an immediate increase in exhaled o-toluidine concentrations within 2 min and higher maximum concentrations, monitoring exhaled o-toluidine may potentially be applied for the non-invasive real-time detection of accidental intravenous injection of prilocaine.

11.
Nutrients ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35334850

RESUMEN

BACKGROUND: We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. METHODS: Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. RESULTS: A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. CONCLUSIONS: The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo.


Asunto(s)
Probióticos , Animales , Antibacterianos/farmacología , Bacterias/genética , Candida albicans , Técnicas de Cocultivo , Ratones , Probióticos/farmacología
12.
iScience ; 25(2): 103739, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35141500

RESUMEN

Healthy aging driven physio-metabolic events in females hold the key to complex in vivo mechanistic links and systemic cross talks. Effects from basic changes at genome, proteome, metabolome, and lipidome levels are often reflected at the upstream phenome (e.g., breath volatome) cascades. Here, we have analyzed exhaled volatile metabolites (measured via real time mass spectrometry based breathomics) data from 204 healthy females, aged between 07 and 80 years. Age related substance-specific differences were observed in breath biomarkers. Exhalation of blood-borne endogenous organosulfur, short-chain fatty acids, alcohols, aldehydes, alkene, ketones and exogenous nitriles, terpenes, and aromatics have denominated interplay between endocrine differences, energy homeostasis, systemic microbial diversity, oxidative stress, and lifestyle. Overall marker expressions were suppressed under daily oral contraception. Young homosexual/lesbian adults turned out as breathomic outliers. Previously proposed disease-specific breath biomarkers should be reevaluated upon aging effects. Breathomics offers a noninvasive window toward system-wide understanding and personalized monitoring of aging i.e., translatable to gerontology.

13.
Eur Respir J ; 60(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35169028

RESUMEN

BACKGROUND: While assumed to protect against coronavirus transmission, face masks may have effects on respiratory-haemodynamic parameters. Within this pilot study, we investigated immediate and progressive effects of FFP2 and surgical masks on exhaled breath constituents and physiological attributes in 30 adults at rest. METHODS: We continuously monitored exhaled breath profiles within mask space in older (age 60-80 years) and young to middle-aged (age 20-59 years) adults over the period of 15 and 30 min by high-resolution real-time mass-spectrometry. Peripheral oxygen saturation (S pO2 ) and respiratory and haemodynamic parameters were measured (noninvasively) simultaneously. RESULTS: Profound, consistent and significant (p≤0.001) changes in S pO2 (≥60_FFP2-15 min: 5.8±1.3%↓, ≥60_surgical-15 min: 3.6±0.9%↓, <60_FFP2-30 min: 1.9±1.0%↓, <60_surgical-30 min: 0.9±0.6%↓) and end-tidal carbon dioxide tension (P ETCO2 ) (≥60_FFP2-15 min: 19.1±8.0%↑, ≥60_surgical-15 min: 11.6±7.6%↑, <60_FFP2- 30 min: 12.1±4.5%↑, <60_surgical- 30 min: 9.3±4.1%↑) indicate ascending deoxygenation and hypercarbia. Secondary changes (p≤0.005) to haemodynamic parameters (e.g. mean arterial pressure (MAP) ≥60_FFP2-15 min: 9.8±10.4%↑) were found. Exhalation of bloodborne volatile metabolites, e.g. aldehydes, hemiterpene, organosulfur, short-chain fatty acids, alcohols, ketone, aromatics, nitrile and monoterpene mirrored behaviour of cardiac output, MAP, S pO2 , respiratory rate and P ETCO2 . Exhaled humidity (e.g. ≥60_FFP2-15 min: 7.1±5.8%↑) and exhaled oxygen (e.g. ≥60_FFP2-15 min: 6.1±10.0%↓) changed significantly (p≤0.005) over time. CONCLUSIONS: Breathomics allows unique physiometabolic insights into immediate and transient effects of face mask wearing. Physiological parameters and breath profiles of endogenous and/or exogenous volatile metabolites indicated putative cross-talk between transient hypoxaemia, oxidative stress, hypercarbia, vasoconstriction, altered systemic microbial activity, energy homeostasis, compartmental storage and washout. FFP2 masks had a more pronounced effect than surgical masks. Older adults were more vulnerable to FFP2 mask-induced hypercarbia, arterial oxygen decline, blood pressure fluctuations and concomitant physiological and metabolic effects.


Asunto(s)
COVID-19 , Espiración , Adulto , Anciano , Anciano de 80 o más Años , Alcoholes , Aldehídos , Dióxido de Carbono/metabolismo , Hemiterpenos , Hemodinámica , Humanos , Cetonas , Máscaras , Persona de Mediana Edad , Monoterpenos , Nitrilos , Oxígeno , Proyectos Piloto , Adulto Joven
14.
Front Microbiol ; 12: 699858, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394042

RESUMEN

Background: Probiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases. Methods: Reuterin supernatant was cultured from Lentilactobacillus diolivorans in a bioreactor in a two-step process. Storage stability at -20°C and effect of repeated freeze-thaw cycles were assessed by high performance liquid chromatography (HPLC). Antimicrobial activity was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus (S.) aureus, Staphylococcus epidermidis, Streptococcus (S.) agalactiae, Propionibacterium acnes, and Pseudomonas aeruginosae. Male BALBc mice were gavage fed with reuterin supernatant (n = 10) or culture medium (n = 10). Fecal volatile organic compounds (VOC) were assessed by gas chromatography mass spectroscopy; the microbiome was examined by 16S rRNA gene sequencing. Results: The supernatant contained 13.4 g/L reuterin (3-hydroxypropionaldehyde; 3-HPA). 3-HPA content remained stable at -20°C for 35 days followed by a slow decrease of its concentration. Repeated freezing/thawing caused a slow 3-HPA decrease. Antimicrobial activity was encountered against S. aureus, S. epidermidis, and S. agalactiae. Microbiome analysis showed no differences in alpha and beta diversity markers. Linear discriminant effect size (LEfSe) analysis identified Lachnospiraceae_bacterium_COE1 and Ruminoclostridium_5_uncultured_Clostridiales_ bacterium (in the reuterin medium group) and Desulfovibrio_uncultured_ bacterium, Candidatus Arthromitus, Ruminococcae_NK4A214_group, and Eubacterium_xylanophilum_group (in the reuterin group) as markers for group differentiation. VOC analysis showed a significant decrease of heptane and increase of 3-methylbutanal in the reuterin group. Conclusion: The supernatant produced in this study contained acceptable amounts of 3-HPA remaining stable for 35 days at -20°C and exhibiting an antimicrobial effect against S. aureus, S. agalactiae, and S. epidermidis. Under in vivo conditions, the reuterin supernatant caused alterations of the fecal microbiome. In the fecal, VOC analysis decreased heptane and increased 3-methylbutanal were encountered. These findings suggest the high potential of the reuterin system to influence the intestinal microbiome in health and disease, which needs to be examined in detail in future projects.

15.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203988

RESUMEN

We aimed to assess the in vitro antimicrobial activity and the in vivo effect on the murine fecal microbiome and volatile organic compound (VOC) profile of (S)-reutericyclin. The antimicrobial activity of (S)-reutericyclin was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Staphylococcus (S.) epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa and Propionibacterium acnes. Reutericyclin or water were gavage fed to male BALBc mice for 7 weeks. Thereafter stool samples underwent 16S based microbiome analysis and VOC analysis by gas chromatography mass spectrometry (GC-MS). (S)-reutericyclin inhibited growth of S. epidermidis only. Oral (S)-reutericyclin treatment caused a trend towards reduced alpha diversity. Beta diversity was significantly influenced by reutericyclin. Linear discriminant analysis Effect Size (LEfSe) analysis showed an increase of Streptococcus and Muribaculum as well as a decrease of butyrate producing Ruminoclostridium, Roseburia and Eubacterium in the reutericyclin group. VOC analysis revealed significant increases of pentane and heptane and decreases of 2,3-butanedione and 2-heptanone in reutericyclin animals. The antimicrobial activity of (S)-reutericyclin differs from reports of (R)-reutericyclin with inhibitory effects on a multitude of Gram-positive bacteria reported in the literature. In vivo (S)-reutericyclin treatment led to a microbiome shift towards dysbiosis and distinct alterations of the fecal VOC profile.


Asunto(s)
Heces/microbiología , Microbiota/efectos de los fármacos , Ácido Tenuazónico/análogos & derivados , Compuestos Orgánicos Volátiles/análisis , Animales , Análisis Discriminante , Masculino , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Ácido Tenuazónico/farmacología
16.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064882

RESUMEN

Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification of animals or herds affected by MAP are urgently required. This explorative study evaluated the potential of volatile organic compounds (VOCs) to discriminate between cattle with and without MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs were identified by GC-MS and quantified against reference substances. To discriminate MAP-positive from MAP-negative samples, VOC feature selection and random forest classification were performed. Classification models, generated for each biological specimen, were evaluated using repeated cross-validation. The robustness of the results was tested by predicting samples of two different sampling days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4-5). Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes. Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most reproducible, discriminatory, and highly predictive.


Asunto(s)
Aire , Heces/química , Gases/análisis , Odorantes/análisis , Paratuberculosis/diagnóstico , Alveolos Pulmonares/metabolismo , Animales , Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/microbiología , Curva ROC , Reproducibilidad de los Resultados , Compuestos Orgánicos Volátiles/análisis
17.
Molecules ; 26(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530644

RESUMEN

The aim of this study was to analyze the exhaled volatile organic compounds (VOCs) profile, airway microbiome, lung function and exercise performance in congenital diaphragmatic hernia (CDH) patients compared to healthy age and sex-matched controls. A total of nine patients (median age 9 years, range 6-13 years) treated for CDH were included. Exhaled VOCs were measured by GC-MS. Airway microbiome was determined from deep induced sputum by 16S rRNA gene sequencing. Patients underwent conventional spirometry and exhausting bicycle spiroergometry. The exhaled VOC profile showed significantly higher levels of cyclohexane and significantly lower levels of acetone and 2-methylbutane in CDH patients. Microbiome analysis revealed no significant differences for alpha-diversity, beta-diversity and LefSe analysis. CDH patients had significantly lower relative abundances of Pasteurellales and Pasteurellaceae. CDH patients exhibited a significantly reduced Tiffeneau Index. Spiroergometry showed no significant differences. This is the first study to report the VOCs profile and airway microbiome in patients with CDH. Elevations of cyclohexane observed in the CDH group have also been reported in cases of lung cancer and pneumonia. CDH patients had no signs of impaired physical performance capacity, fueling controversial reports in the literature.


Asunto(s)
Bacterias/clasificación , Hernias Diafragmáticas Congénitas/cirugía , Herniorrafia/métodos , ARN Ribosómico 16S/genética , Compuestos Orgánicos Volátiles/análisis , Acetona/análisis , Adolescente , Bacterias/genética , Bacterias/aislamiento & purificación , Niño , ADN Bacteriano/genética , ADN Ribosómico/genética , Ejercicio Físico , Femenino , Hernias Diafragmáticas Congénitas/metabolismo , Hernias Diafragmáticas Congénitas/fisiopatología , Humanos , Masculino , Microbiota , Pentanos/análisis , Filogenia , Espirometría , Capacidad Vital
18.
Front Vet Sci ; 8: 620327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614764

RESUMEN

Analysis of volatile organic compounds (VOCs) is a novel approach to accelerate bacterial culture diagnostics of Mycobacterium avium subsp. paratuberculosis (MAP). In the present study, cultures of fecal and tissue samples from MAP-infected and non-suspect dairy cattle and goats were explored to elucidate the effects of sample matrix and of animal species on VOC emissions during bacterial cultivation and to identify early markers for bacterial growth. The samples were processed following standard laboratory procedures, culture tubes were incubated for different time periods. Headspace volume of the tubes was sampled by needle trap-micro-extraction, and analyzed by gas chromatography-mass spectrometry. Analysis of MAP-specific VOC emissions considered potential characteristic VOC patterns. To address variation of the patterns, a flexible and robust machine learning workflow was set up, based on random forest classifiers, and comprising three steps: variable selection, parameter optimization, and classification. Only a few substances originated either from a certain matrix or could be assigned to one animal species. These additional emissions were not considered informative by the variable selection procedure. Classification accuracy of MAP-positive and negative cultures of bovine feces was 0.98 and of caprine feces 0.88, respectively. Six compounds indicating MAP presence were selected in all four settings (cattle vs. goat, feces vs. tissue): 2-Methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, heptanal, isoprene, and 2-heptanone. Classification accuracies for MAP growth-scores ranged from 0.82 for goat tissue to 0.89 for cattle feces. Misclassification occurred predominantly between related scores. Seventeen compounds indicating MAP growth were selected in all four settings, including the 6 compounds indicating MAP presence. The concentration levels of 2,3,5-trimethylfuran, 2-pentylfuran, 1-propanol, and 1-hexanol were indicative for MAP cultures before visible growth was apparent. Thus, very accurate classification of the VOC samples was achieved and the potential of VOC analysis to detect bacterial growth before colonies become visible was confirmed. These results indicate that diagnosis of paratuberculosis can be optimized by monitoring VOC emissions of bacterial cultures. Further validation studies are needed to increase the robustness of indicative VOC patterns for early MAP growth as a pre-requisite for the development of VOC-based diagnostic analysis systems.

19.
Heliyon ; 7(1): e05922, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33490682

RESUMEN

BACKGROUND: Isoprene (C5H8) is a clinically important breath metabolite. Although, hundreds of studies have reported differential expressions in isoprene exhalation as breath biomarker for diverse diseases, the substance couldn't enter to clinical practice as diagnostic marker. Moreover, many experimental/basic observations upon breath isoprene remained unrelated to the corresponding pathophysiological effects on its putative metabolic origin (i.e. mevalonate pathway). Here, we investigated the fundamental reason that hindered the rational interpretation and translation of this marker from basic to clinical science. METHODS: Via high-resolution mass-spectrometry based breathomics in 1026 human subjects, we discovered adults with significant deficiency (order of magnitude lower than the normal) and complete absence of breath isoprene. We prospectively applied real-time breathomics, quantitative gene expression analysis of the mevalonate pathway enzymes, lipid-profiling and hemodynamic monitoring on those isoprene deficient subjects and controls. Additionally, the subject with absence of isoprene was followed up throughout different phases of her womanhood. RESULTS: In contrast to convention, we witnessed that adults can live healthy without exhaling isoprene or with significant deficiency. This rare phenotype represents a recessive inheritance. Despite physio-metabolic changes during menstrual cycle (that is known to profoundly affect isoprene exhalation) and profoundly increased plasma cholesterol during pregnancy and after childbirth, isoprene remained absent. All genes of mevalonate pathway enzymes were normally expressed in all participants, without any down-regulation or compensatory up-regulation. CONCLUSIONS: Absence/deficiency of isoprene despite normal lipid profiles and no mevalonate pathway malfunction disqualifies the long-believed metabolic origin of isoprene from cholesterol biosynthesis. Thus, clinical translation of breath isoprene expressions should not be generally attributed to corresponding pathophysiological effects onto mevalonate/cholesterol pathway. Our finding has refined and optimized the clinical interpretation of isoprene as biomarker in volatile metabolomics and breathomics. Future studies will address the correct metabolic origin of isoprene to imply this important marker to routine practice.

20.
J Breath Res ; 14(4): 046012, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021213

RESUMEN

Breath analysis holds promise for non-invasive in vivo monitoring of disease related processes. However, physiological parameters may considerably affect profiles of exhaled volatile organic substances (VOCs). Volatile substances can be released via alveoli, bronchial mucosa or from the upper airways. The aim of this study was the systematic investigation of the influence of different sampling sites in the respiratory tract on VOC concentration profiles by means of a novel experimental setup. After ethical approval, breath samples were collected from 25 patients undergoing bronchoscopy for endobronchial ultrasound or bronchoscopic lung volume reduction from different sites in the airways. All patients had total intravenous anaesthesia under pressure-controlled ventilation. If necessary, respiratory parameters were adjusted to keep PETCO2 = 35-45 mm Hg. 30 ml gas were withdrawn at six sampling sites by means of gastight glass syringes: S1 = Room air, S2 = Inspiration, S3 = Endotracheal tube, S4 = Trachea, S5 = Right B6 segment, S6 = Left B6 segment (S4-S6 through the bronchoscope channel). 10 ml were used for VOC analysis, 20 ml for PCO2 determination. Samples were preconcentrated by solid-phase micro-extraction (SPME) and analysed by gas chromatography-mass spectrometry (GC-MS). PCO2 was determined in a conventional blood gas analyser. Statistically significant differences in substance concentrations for acetone, isoprene, 2-methyl-pentane and n-hexane could be observed between different sampling sites. Increasing substance concentrations were determined for acetone (15.3%), 2-methyl-pentane (11.4%) and n-hexane (19.3%) when passing from distal to proximal sampling sites. In contrast, isoprene concentrations decreased by 9.9% from proximal to more distal sampling sites. Blank bronchoscope measurements did not show any contaminations. Increased substance concentrations in the proximal respiratory tract may be explained through substance excretion from bronchial mucosa while decreased concentrations could result from absorption or reaction processes. Spatial mapping of VOC profiles can provide novel insights into substance specific exhalation kinetics and mechanisms.


Asunto(s)
Pruebas Respiratorias/métodos , Broncoscopía , Espiración , Manejo de Especímenes , Compuestos Orgánicos Volátiles/análisis , Dióxido de Carbono/química , Femenino , Humanos , Límite de Detección , Pulmón/química , Masculino , Persona de Mediana Edad , Presión Parcial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...