Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clim Dyn ; 56(11-12): 3817-3833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776646

RESUMEN

Holocene climate variability is punctuated by episodic climatic events such as the Little Ice Age (LIA) predating the industrial-era warming. Their dating and forcing mechanisms have however remained controversial. Even more crucially, it is uncertain whether earlier events represent climatic regimes similar to the LIA. Here we produce and analyse a new 7500-year long palaeoclimate record tailored to detect LIA-like climatic regimes from northern European tree-ring data. In addition to the actual LIA, we identify LIA-like ca. 100-800 year periods with cold temperatures combined with clear sky conditions from 540 CE, 1670 BCE, 3240 BCE and 5450 BCE onwards, these LIA-like regimes covering 20% of the study period. Consistent with climate modelling, the LIA-like regimes originate from a coupled atmosphere-ocean-sea ice North Atlantic-Arctic system and were amplified by volcanic activity (multiple eruptions closely spaced in time), tree-ring evidence pointing to similarly enhanced LIA-like regimes starting after the eruptions recorded in 1627 BCE, 536/540 CE and 1809/1815 CE. Conversely, the ongoing decline in Arctic sea-ice extent is mirrored in our data which shows reversal of the LIA-like conditions since the late nineteenth century, our record also correlating highly with the instrumentally recorded Northern Hemisphere and global temperatures over the same period. Our results bridge the gaps between low- and high-resolution, precisely dated proxies and demonstrate the efficacy of slow and fast components of the climate system to generate LIA-like climate regimes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-021-05669-0.

2.
Glob Chang Biol ; 24(6): 2691-2707, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29436149

RESUMEN

Arctic moistening will affect the circumpolar forested riparian ecosystems. Upward trends observed for precipitation in high latitudes illustrate that the moistening may be underway to influence the woody biomass production near the inland waters, lakes and streams with effects on carbon pools and fluxes. Although the flooding and waterlogging tolerance of seedlings has been investigated, our understanding of responses in mature trees is still limited. Here we employ tree-ring δ13 C and width data from a subarctic riparian setting in Lapland, where artificially high lake level (HLL) has already altered the ecophysiological and growth responses of riparian Pinus sylvestris trees to external drivers under conditions simulating moister environment. Prior to the HLL event, the carbon assimilation rate was primarily limited by irradiance as reflected in the δ13 C data and the radial growth of south-facing riparian trees remained increased in comparison to shaded upland trees. By contrast, the riparian trees were not similarly benefited during the HLL period when reduced assimilation depleted the riparian in comparison to upland δ13 C despite of increased irradiance. As a result, the radial growth of riparian trees was markedly reduced over the HLL event while the upland trees benefited from increased irradiance and summer time warming. Although the production of biomass at high latitudes is commonly considered temperature-limited, our results highlight the increasing role of Arctic moistening to limit the growth when increased precipitation (cloudiness) reduces the incoming solar radiation in general and when the riparian habitat becomes increasingly waterlogged in particular. The effects of high-latitude warming to induce higher biomass productivity may be restricted by negative feedbacks.


Asunto(s)
Carbono/metabolismo , Pinus sylvestris/crecimiento & desarrollo , Pinus sylvestris/metabolismo , Regiones Árticas , Biomasa , Isótopos de Carbono/análisis , Finlandia , Inundaciones
3.
Sci Rep ; 8(1): 1339, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358711

RESUMEN

The large volcanic eruptions of AD 536 and 540 led to climate cooling and contributed to hardships of Late Antiquity societies throughout Eurasia, and triggered a major environmental event in the historical Roman Empire. Our set of stable carbon isotope records from subfossil tree rings demonstrates a strong negative excursion in AD 536 and 541-544. Modern data from these sites show that carbon isotope variations are driven by solar radiation. A model based on sixth century isotopes reconstruct an irradiance anomaly for AD 536 and 541-544 of nearly three standard deviations below the mean value based on modern data. This anomaly can be explained by a volcanic dust veil reducing solar radiation and thus primary production threatening food security over a multitude of years. We offer a hypothesis that persistently low irradiance contributed to remarkably simultaneous outbreaks of famine and Justinianic plague in the eastern Roman Empire with adverse effects on crop production and photosynthesis of the vitamin D in human skin and thus, collectively, human health. Our results provide a hitherto unstudied proxy for exploring the mechanisms of 'volcanic summers' to demonstrate the post-eruption deficiencies in sunlight and to explain the human consequences during such calamity years.


Asunto(s)
Isótopos de Carbono/análisis , Árboles/química , Erupciones Volcánicas/historia , Polvo , Monitoreo del Ambiente , Abastecimiento de Alimentos , Fósiles , Historia Medieval , Humanos
4.
J Environ Manage ; 67(1): 47-54, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12659803

RESUMEN

The majority of untouched natural boreal forests have been regenerated through large catastrophes, occurring by intervals between 50 and 100 years. Storm and fire will open the landscape, result in a huge amount of dead or dying trees and let the pioneer tree species germinate. These processes are the guideline for Finnish forest management today. The main focus by maintaining the biodiversity in Finnish boreal forest zone is directed to managed forests. Nature-orientated silviculture on stand level is practised. The site type classification, a reflection of the modern concept of biodiversity and developed by Cajander early in 1900s, on the basis of natural vegetation composition of the site, has the central role by choosing tree species, regeneration methods and thinning procedure, and reflects also on the site productivity. The small size of stands, the abundance of natural seedlings in planted stands and the popularity of mixed stands have a positive impact on biodiversity of forests. The protection of small-sized valuable habitats in commercially managed stands, the leaving of retention trees standing and lying in the forest in all phases of the rotation, are activities made for biodiversity. Many insects and fungi are adapted to catastrophes and so they can survive in single stems left on regeneration areas. Maintaining the biodiversity in multifunctional forests is also supported by the new forest legislation and by the criteria of Finnish Forest Certification System.


Asunto(s)
Conservación de los Recursos Naturales , Ambiente , Agricultura Forestal , Árboles , Europa (Continente) , Finlandia , Germinación , Dinámica Poblacional , Plantones/crecimiento & desarrollo , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...