Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prostate Cancer Prostatic Dis ; 26(2): 293-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35046557

RESUMEN

BACKGROUND: Androgen receptor (AR) ligand-binding domain (LBD) mutations occur in ~20% of all castration-resistant prostate cancer (CRPC) patients. These mutations confer ligand promiscuity, but the affinity for many steroid hormone pathway intermediates is unknown. In this study, we investigated the stimulation of clinically relevant AR-LBD mutants by endogenous and exogenous steroid hormones present in CRPC patients to unravel their potential contribution to AR pathway reactivation. METHODS: A meta-analysis of studies reporting untargeted analysis of AR mutants was performed to identify clinically relevant AR-LBD mutations. Using luciferase reporter and quantitative fluorescent microscopy, these AR mutants were screened for sensitivity for various endogenous steroids and synthetic glucocorticoids used in the treatment of CRPC. RESULTS: The meta-analysis revealed that ARL702H (3.4%), ARH875Y (4.9%), and ART878A (4.4%) were the most prevalent AR-LBD mutations across 1614 CRPC patients from 21 unique studies. Testosterone (EC50: 0.22 nmol/L) and 11-ketotestosterone (11KT, EC50: 0.74 nmol/L) displayed subnanomolar affinity for ARWT. The p.H875Y mutation selectively increased sensitivity of the AR for 11KT (EC50: 0.15 nmol/L, p < 0.05 vs ARWT), whereas p.L702H decreased sensitivity for 11KT by almost 50-fold. While cortisol and prednisolone both stimulate ARL702H, dexamethasone importantly does not. CONCLUSION: Both testosterone and 11KT effectively contribute to ARWT activation, while selective sensitization positions 11KT as a more prominent activator of ARH875Y. Dexamethasone may be a suitable alternative to prednisolone and should be explored in patients bearing the ARL702H.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Andrógenos/genética , Andrógenos/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Glucocorticoides/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Ligandos , Testosterona/metabolismo , Esteroides/metabolismo , Mutación , Prednisolona/farmacología , Dexametasona/farmacología
2.
Am J Physiol Endocrinol Metab ; 322(6): E494-E507, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35403437

RESUMEN

Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.


Asunto(s)
Trastorno por Atracón , Bulimia , Animales , Bulimia/genética , Bulimia/metabolismo , Modelos Animales de Enfermedad , Ingestión de Alimentos/genética , Conducta Alimentaria , Femenino , Expresión Génica , Ghrelina/metabolismo , Hígado/metabolismo , Locomoción , Masculino , Ratones
3.
J Mol Endocrinol ; 66(2): 83-96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263557

RESUMEN

Acylated ghrelin (AG) is a gut-derived peptide with growth hormone secretagogue (GHS), orexigenic and other physiological activities mediated by GHS receptor-1a (GHSR). Ghrelin occurs in unacylated form (UAG) with activities opposing AG, although its mechanism of action is unknown. UAG does not antagonize AG at GHSR, and has biological effects on cells that lack this receptor. Because UAG binds to cells, it has been hypothesized that UAG acts via a cell-surface receptor, although this has not been confirmed. This study aimed to identify cell surface proteins to which UAG binds that could modulate or mediate its biological effects. The MCF7 cell-line was used as a model because UAG induces ERK signaling in these cells in the absence of GHSR. Using ligand-receptor capture and LC-MS/MS we identified specific heparan-sulfate proteoglycans (HSPGs) to which UAG interacts on cell surfaces. In line with this, UAG, as well as AG, bind with high affinity to heparin, and heparin and heparinase treatment suppress, whereas HSPG overexpression increases, UAG binding to MCF7 cell surfaces. Moreover, heparin suppresses the ERK response to UAG. However, conversion of the lysines in UAG to alanine, which prevents its binding to heparin and cell surface HSPGs, does not prevent its activation of ERK. Our data show that the interaction of UAG with HSPGs modulates its biological activity in cells. More broadly, the interaction of UAG and AG with HSPGs could be important for the specificity and potency of their biological action in vivo.


Asunto(s)
Ghrelina/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Acilación , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Heparina/metabolismo , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Células MCF-7 , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Ghrelina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...