Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(1): e0128923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38047701

RESUMEN

IMPORTANCE: There is a strong need to find novel treatment options against urinary tract infections associated with antimicrobial resistance. This study evaluates two atypical tetracyclines, namely chelocardin (CHD) and amidochelocardin (CDCHD), with respect to their pharmacokinetics and pharmacodynamics. We show CHD and CDCHD are cleared at high concentrations in mouse urine. Especially, CDCHD is highly effective in an ascending urinary tract infection model, suggesting further preclinical evaluation.


Asunto(s)
Antibacterianos , Infecciones Urinarias , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Antibacterianos/uso terapéutico , Antibacterianos/farmacocinética , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico
2.
mSphere ; 7(5): e0030222, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993700

RESUMEN

Amidochelocardin is a broad-spectrum antibiotic with activity against many Gram-positive and Gram-negative bacteria. According to recent data, the antibiotic effect of this atypical tetracycline is directed against the cytoplasmic membrane, which is associated with the dissipation of the membrane potential. Here, we investigated the effect of amidochelocardin on the proteome of Clostridioides difficile to gain insight into the membrane stress physiology of this important anaerobic pathogen. For the first time, the membrane-directed action of amidochelocardin was confirmed in an anaerobic pathogen. More importantly, our results revealed that aromatic compounds potentially play an important role in C. difficile upon dissipation of its membrane potential. More precisely, a simultaneously increased production of enzymes required for the synthesis of chorismate and two putative phenazine biosynthesis proteins point to the production of a hitherto unknown compound in response to membrane depolarization. Finally, increased levels of the ClnAB efflux system and its transcriptional regulator ClnR were found, which were previously found in response to cationic antimicrobial peptides like LL-37. Therefore, our data provide a starting point for a more detailed understanding of C. difficile's way to counteract membrane-active compounds. IMPORTANCE C. difficile is an important anaerobe pathogen causing mild to severe infections of the gastrointestinal tract. To avoid relapse of the infection following antibiotic therapy, antibiotics are needed that efficiently eradicate C. difficile from the intestinal tract. Since C. difficile was shown to be substantially sensitive to membrane-active antibiotics, it has been proposed that membrane-active antibiotics might be promising for the therapy of C. difficile infections. Therefore, we studied the response of C. difficile to amidochelocardin, a membrane-active antibiotic dissipating the membrane potential. Interestingly, C. difficile's response to amidochelocardin indicates a role of aromatic metabolites in mediating stress caused by dissipation of the membrane potential.


Asunto(s)
Clostridioides difficile , Clostridioides , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Proteoma , Tetraciclinas/farmacología , Fenazinas/farmacología
3.
Nat Rev Chem ; 5(10): 726-749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34426795

RESUMEN

An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.

4.
Nat Rev Chem ; 5(10): 726-749, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37118182

RESUMEN

An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.

5.
Antibiotics (Basel) ; 9(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962088

RESUMEN

The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.

6.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118719, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32302670

RESUMEN

The bacterial twin-arginine (Tat) pathway serves in the exclusive secretion of folded proteins with bound cofactors. While Tat pathways in Gram-negative bacteria and chloroplast thylakoids consist of conserved TatA, TatB and TatC subunits, the Tat pathways of Bacillus species and many other Gram-positive bacteria stand out for their minimalist nature with the core translocase being composed of essential TatA and TatC subunits only. Here we addressed the question whether the minimal TatAyCy translocase of Bacillus subtilis recruits additional cellular components that modulate its activity. To this end, TatAyCy was purified by affinity- and size exclusion chromatography, and interacting co-purified proteins were identified by mass spectrometry. This uncovered the cell envelope stress responsive LiaH protein as an accessory subunit of the TatAyCy complex. Importantly, our functional studies show that Tat expression is tightly trailed by LiaH induction, and that LiaH itself determines the capacity and quality of TatAyCy-dependent protein translocation. In contrast, LiaH has no role in high-level protein secretion via the general secretion (Sec) pathway. Altogether, our observations show that protein translocation by the minimal Tat translocase TatAyCy is tightly intertwined with an adequate bacterial response to cell envelope stress. This is consistent with a critical need to maintain cellular homeostasis, especially when the membrane is widely opened to permit passage of large fully-folded proteins via Tat.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Estrés Fisiológico/fisiología , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas de Transporte de Membrana/metabolismo , Mutación , Pliegue de Proteína , Transporte de Proteínas/fisiología , Especificidad por Sustrato
7.
Eur J Med Chem ; 188: 112005, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31911294

RESUMEN

To address the global challenge of emerging antimicrobial resistance, the hitherto most successful strategy to new antibiotics has been the optimization of validated natural products; most of these efforts rely on semisynthesis. Herein, we report the semisynthetic modification of amidochelocardin, an atypical tetracycline obtained via genetic engineering of the chelocardin producer strain. We report modifications at C4, C7, C10 and C11 by the application of methylation, acylation, electrophilic substitution, and oxidative C-C coupling reactions. The antibacterial activity of the reaction products was tested against a panel of Gram-positive and Gram-negative pathogens. The emerging structure-activity relationships (SARs) revealed that positions C7 and C10 are favorable anchor points for the semisynthesis of optimized derivatives. The observed SAR was different from that known for tetracyclines, which underlines the pronounced differences between the two compound classes.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tetraciclinas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tetraciclinas/síntesis química , Tetraciclinas/química
8.
Mol Microbiol ; 111(4): 1009-1024, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30648305

RESUMEN

Bacteria can cope with toxic compounds such as antibiotics by inducing genes for their detoxification. A common detoxification strategy is compound excretion by ATP-binding cassette (ABC) transporters, which are synthesized upon compound contact. We previously identified the multidrug resistance ABC transporter LieAB in Listeria monocytogenes, a Gram-positive bacterium that occurs ubiquitously in the environment, but also causes severe infections in humans upon ingestion. Expression of the lieAB genes is strongly induced in cells lacking the PadR-type transcriptional repressor LftR, but compounds leading to relief of this repression in wild-type cells were not known. Using RNA-Seq and promoter-lacZ fusions, we demonstrate highly specific repression of the lieAB and lftRS promoters through LftR. Screening of a natural compound library yielded the depsipeptide aurantimycin A - synthesized by the soil-dwelling Streptomyces aurantiacus - as the first known naturally occurring inducer of lieAB expression. Genetic and phenotypic experiments concordantly show that aurantimycin A is a substrate of the LieAB transporter and thus, lftRS and lieAB represent the first known genetic module conferring and regulating aurantimycin A resistance. Collectively, these genes may support the survival of L. monocytogenes when it comes into contact with antibiotic-producing bacteria in the soil.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Depsipéptidos/farmacología , Farmacorresistencia Bacteriana/genética , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Streptomyces/metabolismo , Factores de Transcripción/metabolismo
9.
PLoS One ; 10(3): e0122538, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826316

RESUMEN

Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra), which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH), which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Hemo/biosíntesis , Proteínas de Unión a Hierro/fisiología , Hierro/metabolismo , Frataxina
11.
Nat Chem Biol ; 10(12): 1034-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344811

RESUMEN

We identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu(+) accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu(+) became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cobre/metabolismo , Lisosomas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Zinc/metabolismo , Cationes Bivalentes , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Perfilación de la Expresión Génica , Homeostasis , Concentración de Iones de Hidrógeno , Marcaje Isotópico , Isótopos , Lisosomas/ultraestructura , Imagen Molecular , Plastocianina/biosíntesis , Plastocianina/genética , Polifosfatos/metabolismo , Factores de Transcripción/genética
12.
Biochim Biophys Acta ; 1833(10): 2267-78, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23764491

RESUMEN

Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Transporte Biológico , Reactivos de Enlaces Cruzados , Espectroscopía de Resonancia por Spin del Electrón , Fluorescencia , Hemoproteínas/metabolismo , Immunoblotting , Cinética , Proteínas de Transporte de Membrana/genética , Oxidación-Reducción , Peroxidasa/metabolismo
13.
Metallomics ; 5(1): 15-28, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23192658

RESUMEN

Microorganisms have to cope with restricted iron bioavailability in most environmental habitats as well as during host colonization. The continuous struggle for iron has brought forth a plethora of acquisition and assimilation strategies that share several functional and mechanistic principles. One common theme is the utilization of high-affinity chelators for extracellular iron mobilization, generally known as siderophore-dependent iron acquisition. This basic strategy is related with another central aspect of microbial iron acquisition, which is the release of the mobilized iron from extracellular sources to allow its transfer and incorporation into metabolically active proteins. A variety of mechanisms which are often coupled with high-affinity uptake have evolved to facilitate the removal of iron from siderophore ligands; however, they differ in many key aspects including substrate specificities and release efficiencies. The most sophisticated iron release pathways comprise processes of specific hydrolysis and reduction of ferric siderophores, especially in the case of high-affinity iron complexes with greatly negative redox potentials that often represent crucial factors for virulence development in bacterial and fungal pathogens. During the following steps of iron utilization, the acquired metal is transferred through intracellular trafficking pathways which may include diverse storage compartments in order to be directed to cofactor assembly systems and to final protein targeting. Several of these iron channeling routes have been described recently and provide first insights into the later steps of iron assimilation that characterize an essential part of the cellular iron homeostasis network.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Hierro/metabolismo , Bacterias/química , Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/química , Modelos Moleculares , Sideróforos/química , Sideróforos/metabolismo
14.
FEBS Lett ; 587(2): 206-13, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23220087

RESUMEN

Siderophores play an essential role in a multitude of microbial iron acquisition pathways. Many bacteria use xenosiderophores as iron sources that are produced by different microbial species in their habitat. We investigated the capacity of xenosiderophore uptake in the soil bacterium Bacillus subtilis and found that it employs several substrate binding proteins with high specificities and affinities for different ferric siderophore species. Protein-ligand interaction studies revealed dissociation constants in the low nanomolar range, while the protein folding stabilities were remarkably increased by their high-affinity ligands. Complementary growth studies confirmed the specificity of xenosiderophore uptake in B. subtilis and showed that its fitness is strongly enhanced by the extensive utilization of non-endogenous siderophores.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Sideróforos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dicroismo Circular , Genes Bacterianos , Hierro/metabolismo , Cinética , Modelos Biológicos , Mutación , Pliegue de Proteína , Estabilidad Proteica , Eliminación de Secuencia , Espectrometría de Fluorescencia
15.
J Biol Chem ; 287(35): 29789-800, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22767609

RESUMEN

The twin-arginine translocation (Tat) pathway is dedicated to the transport of fully folded proteins across the cytoplasmic membranes of many bacteria and the chloroplast thylakoidal membrane. Accordingly, Tat-dependently translocated proteins are known to be delivered to the periplasm of Gram-negative bacteria, the growth medium of Gram-positive bacteria, and the thylakoid lumen. Here, we present the first example of a protein, YkuE of Bacillus subtilis, that is specifically targeted by the Tat pathway to the cell wall of a Gram-positive bacterium. The cell wall binding of YkuE is facilitated by electrostatic interactions. Interestingly, under particular conditions, YkuE can also be targeted to the cell wall in a Tat-independent manner. The biological function of YkuE was so far unknown. Our present studies show that YkuE is a metal-dependent phosphoesterase that preferentially binds manganese and zinc.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Manganeso/metabolismo , Metaloproteínas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Zinc/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Pared Celular/enzimología , Pared Celular/genética , Metaloproteínas/genética , Fosfoproteínas Fosfatasas/genética , Transporte de Proteínas
16.
Biochemistry ; 50(50): 10951-64, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22098718

RESUMEN

Siderophore-interacting proteins (SIPs), such as YqjH from Escherichia coli, are widespread among bacteria and commonly associated with iron-dependent induction and siderophore utilization. In this study, we show by detailed biochemical and genetic analyses the reaction mechanism by which the YqjH protein is able to catalyze the release of iron from a variety of iron chelators, including ferric triscatecholates and ferric dicitrate, displaying the highest efficiency for the hydrolyzed ferric enterobactin complex ferric (2,3-dihydroxybenzoylserine)(3). Site-directed mutagenesis revealed that residues K55 and R130 of YqjH are crucial for both substrate binding and reductase activity. The NADPH-dependent iron reduction was found to proceed via single-electron transfer in a double-displacement-type reaction through formation of a transient flavosemiquinone. The capacity to reduce substrates with extremely negative redox potentials, though at low catalytic rates, was studied by displacing the native FAD cofactor with 5-deaza-5-carba-FAD, which is restricted to a two-electron transfer. In the presence of the reconstituted noncatalytic protein, the ferric enterobactin midpoint potential increased remarkably and partially overlapped with the effective E(1) redox range. Concurrently, the observed molar ratios of generated Fe(II) versus NADPH were found to be ~1.5-fold higher for hydrolyzed ferric triscatecholates and ferric dicitrate than for ferric enterobactin. Further, combination of a chromosomal yqjH deletion with entC single- and entC fes double-deletion backgrounds showed the impact of yqjH on growth during supplementation with ferric siderophore substrates. Thus, YqjH enhances siderophore utilization in different iron acquisition pathways, including assimilation of low-potential ferric substrates that are not reduced by common cellular cofactors.


Asunto(s)
Escherichia coli K12/enzimología , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , FMN Reductasa/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Sideróforos/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dicroismo Circular , Enterobactina/metabolismo , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , FMN Reductasa/química , FMN Reductasa/genética , Quelantes del Hierro/metabolismo , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Oxidación-Reducción , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
17.
Chem Biol ; 18(7): 907-19, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21802011

RESUMEN

Iron acquisition by siderophores is crucial for survival and virulence of many microorganisms. Here, we investigated the binding of the exogenous siderophore ferric enterobactin and the synthetic siderophore mimic ferric mecam by the triscatecholate binding protein FeuA from Bacillus subtilis at the atomic level. The structural complexes provide molecular insights into the capture mechanism of FeuA for exogenous and synthetic siderophores. The protein-ligand complexes show an exclusive acceptance of Λ-stereoconfigured substrates. Ligand-induced cross-bridging of the complexes was not observed, revealing a different thermodynamic behavior especially of the ferric mecam substrate, which was previously shown to dimerize with the enterobactin binding protein CeuE. The nearly identical overall domain movement of FeuA upon binding of ferric enterobactin or ferric mecam compared with endogenously derived ferric bacillibactin implies the importance of the conserved domain rearrangement for recognition by the transmembrane permease FeuBC, for which the conserved FeuA residues E90 and E221 were proved to be essential.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sideróforos/metabolismo , Bacillus subtilis/química , Sitios de Unión , Cristalografía por Rayos X , Enterobactina/metabolismo , Compuestos Férricos/metabolismo , Modelos Moleculares , Unión Proteica
18.
Chembiochem ; 12(13): 2052-61, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21744456

RESUMEN

Frataxin homologues are important iron chaperones in eukarya and prokarya. Using a native proteomics approach we were able to identify the structural frataxin homologue Fra (formerly YdhG) of Bacillus subtilis and to quantify its native iron-binding stoichiometry. Using recombinant proteins we could show in vitro that Fra is able to transfer iron onto the B. subtilis SUF system for iron-sulfur cluster biosynthesis. In a four-constituents reconstitution system (including SufU, SufS, Fra and CitB) we observed a Fra-dependent formation of a [4 Fe-4 S] cluster on SufU that could be efficiently transferred onto the target apo-aconitase (CitB). A Δfra deletion mutant showed a severe growth phenotype associated with a broadly disturbed iron homeostasis; this indicates that Fra is a central component of intracellular iron channeling in B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Bacillus subtilis/genética , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Espectrometría de Masas , Chaperonas Moleculares/metabolismo , Proteómica , Frataxina
19.
PLoS One ; 6(3): e18140, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21479178

RESUMEN

Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described "minimal Tat translocase" consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Ambiente , Proteínas de Transporte de Membrana/metabolismo , Salinidad , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Northern Blotting , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Hierro/metabolismo , Fenotipo , Plásmidos/genética , Transcripción Genética
20.
FEBS Lett ; 585(3): 465-70, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21236255

RESUMEN

Iron-sulfur cluster biosynthesis in Gram-positive bacteria is mediated by the SUF system. The transfer of sulfide from the cysteine desulfurase SufS to the scaffold protein SufU is one of the first steps within the assembly process. In this study, we analyzed the interaction between Bacillus subtilis SufS and its scaffold SufU. The activity of SufS represents a Ping-Pong mechanism leading to successive sulfur loading of the conserved cysteine residues in SufU. Cysteine 41 of SufU is shown to be essential for receiving sulfide from SufS, while cysteines 66 and 128 are needed for SufS/SufU interaction. In conclusion, we present the first step-by-step model for loading of the essential scaffold component SufU by its sulfur donor SufS.


Asunto(s)
Bacillus subtilis/metabolismo , Biocatálisis , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Azufre/química , Sustitución de Aminoácidos , Bacillus subtilis/enzimología , Dominio Catalítico , Cisteína/metabolismo , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/metabolismo , Hierro/química , Cinética , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA