Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 19(1): 66, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832485

RESUMEN

BACKGROUND: ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS: Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS: We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.


Asunto(s)
Membrana Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Polimerizacion
2.
J Biol Chem ; 294(27): 10503-10518, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118237

RESUMEN

Type I interferons (IFN-I) are key innate immune effectors predominantly produced by activated plasmacytoid dendritic cells (pDCs). By modulating immune responses at their foundation, IFNs can widely reshape immunity to control infectious diseases and malignancies. Nevertheless, their biological activities can also be detrimental to surrounding healthy cells, as prolonged IFN-I signaling is associated with excessive inflammation and immune dysfunction. The interaction of the human pDC receptor immunoglobulin-like transcript 7 (ILT7) with its IFN-I-regulated ligand, bone marrow stromal cell antigen 2 (BST2) plays a key role in controlling the IFN-I amounts produced by pDCs in response to Toll-like receptor (TLR) activation. However, the structural determinants and molecular features of BST2 that govern ILT7 engagement and activation are largely undefined. Using two functional assays to measure BST2-stimulated ILT7 activation as well as biophysical studies, here we identified two structurally-distinct regions of the BST2 ectodomain that play divergent roles during ILT7 activation. We found that although the coiled-coil region contains a newly defined ILT7-binding surface, the N-terminal region appears to suppress ILT7 activation. We further show that a stable BST2 homodimer binds to ILT7, but post-binding events associated with the unique BST2 coiled-coil plasticity are required to trigger receptor signaling. Hence, BST2 with an unstable or a rigid coiled-coil fails to activate ILT7, whereas substitutions in its N-terminal region enhance activation. Importantly, the biological relevance of these newly defined domains of BST2 is underscored by the identification of substitutions having opposing potentials to activate ILT7 in pathological malignant conditions.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Receptores Inmunológicos/metabolismo , Secuencia de Aminoácidos , Antígeno 2 del Estroma de la Médula Ósea/química , Antígeno 2 del Estroma de la Médula Ósea/genética , Línea Celular , Dimerización , Humanos , Mutagénesis , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Alineación de Secuencia
3.
Sci Adv ; 5(4): eaau7198, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30989108

RESUMEN

Many cellular processes such as endosomal vesicle budding, virus budding, and cytokinesis require extensive membrane remodeling by the endosomal sorting complex required for transport III (ESCRT-III). ESCRT-III protein family members form spirals with variable diameters in vitro and in vivo inside tubular membrane structures, which need to be constricted to proceed to membrane fission. Here, we show, using high-speed atomic force microscopy and electron microscopy, that the AAA-type adenosine triphosphatase VPS4 constricts and cleaves ESCRT-III CHMP2A-CHMP3 helical filaments in vitro. Constriction starts asymmetrically and progressively decreases the diameter of CHMP2A-CHMP3 tubular structure, thereby coiling up the CHMP2A-CHMP3 filaments into dome-like end caps. Our results demonstrate that VPS4 actively constricts ESCRT-III filaments and cleaves them before their complete disassembly. We propose that the formation of ESCRT-III dome-like end caps by VPS4 within a membrane neck structure constricts the membrane to set the stage for membrane fission.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/química , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Hidrólisis , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
Biochem Soc Trans ; 47(1): 441-448, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30783012

RESUMEN

The endosomal sorting complex required for transport-III (ESCRT-III) and VPS4 catalyze a variety of membrane-remodeling processes in eukaryotes and archaea. Common to these processes is the dynamic recruitment of ESCRT-III proteins from the cytosol to the inner face of a membrane neck structure, their activation and filament formation inside or at the membrane neck and the subsequent or concomitant recruitment of the AAA-type ATPase VPS4. The dynamic assembly of ESCRT-III filaments and VPS4 on cellular membranes induces constriction of membrane necks with large diameters such as the cytokinetic midbody and necks with small diameters such as those of intraluminal vesicles or enveloped viruses. The two processes seem to use different sets of ESCRT-III filaments. Constriction is then thought to set the stage for membrane fission. Here, we review recent progress in understanding the structural transitions of ESCRT-III proteins required for filament formation, the functional role of VPS4 in dynamic ESCRT-III assembly and its active role in filament constriction. The recent data will be discussed in the context of different mechanistic models for inside-out membrane fission.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/metabolismo , Catálisis , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Humanos , Polimerizacion , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Dev Cell ; 47(5): 547-563.e6, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513301

RESUMEN

The coordinated reformation of the nuclear envelope (NE) after mitosis re-establishes the structural integrity and the functionality of the nuclear compartment. The endosomal sorting complex required for transport (ESCRT) machinery, a membrane remodeling pathway that is highly conserved in eukaryotes, has been recently involved in NE resealing by mediating the annular fusion of the nuclear membrane (NM). We show here that CC2D1B, a regulator of ESCRT polymerization, is required to re-establish the nuclear compartmentalization by coordinating endoplasmic reticulum (ER) membrane deposition around chromatin disks with ESCRT-III recruitment to the reforming NE. Accordingly, CC2D1B determines the spatiotemporal distribution of the CHMP7-ESCRT-III axis during NE reformation. Crucially, in CC2D1B-depleted cells, ESCRT activity is uncoupled from Spastin-mediated severing of spindle microtubules, resulting in persisting microtubules that compromise nuclear morphology. Therefore, we reveal CC2D1B as an essential regulatory factor that licenses the formation of ESCRT-III polymers to ensure the orderly reformation of the NE.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Células HCT116 , Células HeLa , Humanos , Ratones , Microtúbulos/metabolismo , Proteínas Represoras/genética
6.
J Cell Sci ; 132(4)2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29967034

RESUMEN

Endosomal sorting complexes required for transport (ESCRT)-III family proteins catalyze membrane remodeling processes that stabilize and constrict membrane structures. It has been proposed that stable ESCRT-III complexes containing CHMP2B could establish diffusion barriers at the post-synaptic spine neck. In order to better understand this process, we developed a novel method based on fusion of giant unilamellar vesicles to reconstitute ESCRT-III proteins inside GUVs, from which membrane nanotubes are pulled. The new assay ensures that ESCRT-III proteins polymerize only when they become exposed to physiologically relevant membrane topology mimicking the complex geometry of post-synaptic spines. We establish that CHMP2B, both full-length and with a C-terminal deletion (ΔC), preferentially binds to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Moreover, we show that CHMP2B preferentially accumulates at the neck of membrane nanotubes, and provide evidence that CHMP2B-ΔC prevents the diffusion of PI(4,5)P2 lipids and membrane-bound proteins across the tube neck. This indicates that CHMP2B polymers formed at a membrane neck may function as a diffusion barrier, highlighting a potential important function of CHMP2B in maintaining synaptic spine structures.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Liposomas Unilamelares/metabolismo , Emparejamiento Cromosómico/fisiología , Difusión , Escherichia coli , Proteínas del Tejido Nervioso/metabolismo , Columna Vertebral/metabolismo
7.
Curr HIV Res ; 10(4): 298-306, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22524178

RESUMEN

HIV-1 employs its structural proteins to orchestrate assembly and budding at the plasma membrane of host cells, which depends on numerous cellular factors. Although cells evolved interferon inducible restriction factors such as tetherin that act as a first line of defense, enveloped viruses, including HIV-1, developed countermeasures in the form of tetherin antagonists such as Vpu that decrease the effect of tetherin and permits normal viral replication in vivo. Here we review recent advances in the understanding of the dynamic structural properties of tetherin that provide the basis to physically retain HIV-1 by bridging plasma and virion membranes after completion of budding.


Asunto(s)
Antígenos CD/genética , VIH-1/inmunología , Mutación , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antígenos CD/ultraestructura , Línea Celular , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/ultraestructura , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Masculino , Replicación Viral
8.
J Mol Biol ; 419(1-2): 75-88, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22406677

RESUMEN

Endosomal sorting complexes required for transport (ESCRTs) regulate diverse processes ranging from receptor sorting at endosomes to distinct steps in cell division and budding of some enveloped viruses. Common to all processes is the membrane recruitment of ESCRT-III that leads to membrane fission. Here, we show that CC2D1A is a novel regulator of ESCRT-III CHMP4B function. We demonstrate that CHMP4B interacts directly with CC2D1A and CC2D1B with nanomolar affinity by forming a 1:1 complex. Deletion mapping revealed a minimal CC2D1A-CHMP4B binding construct, which includes a short linear sequence within the third DM14 domain of CC2D1A. The CC2D1A binding site on CHMP4B was mapped to the N-terminal helical hairpin. Based on a crystal structure of the CHMP4B helical hairpin, two surface patches were identified that interfere with CC2D1A interaction as determined by surface plasmon resonance. Introducing these mutations into a C-terminal truncation of CHMP4B that exerts a potent dominant negative effect on human immunodeficiency virus type 1 budding revealed that one of the mutants lost this effect completely. This suggests that the identified CC2D1A binding surface might be required for CHMP4B polymerization, which is consistent with the finding that CC2D1A binding to CHMP4B prevents CHMP4B polymerization in vitro. Thus, CC2D1A might act as a negative regulator of CHMP4B function.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Sitios de Unión , Línea Celular Transformada , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/genética , Endosomas/metabolismo , Células HEK293 , VIH-1/metabolismo , Humanos , Modelos Moleculares , Mutación/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
9.
Cell Host Microbe ; 7(4): 314-323, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20399176

RESUMEN

The restriction factor BST-2/tetherin contains two membrane anchors employed to retain some enveloped viruses, including HIV-1 tethered to the plasma membrane in the absence of virus-encoded antagonists. The 2.77 A crystal structure of the BST-2/tetherin extracellular core presented here reveals a parallel 90 A long disulfide-linked coiled-coil domain, while the complete extracellular domain forms an extended 170 A long rod-like structure based on small-angle X-ray scattering data. Mutagenesis analyses indicate that both the coiled coil and the N-terminal region are required for retention of HIV-1, suggesting that the elongated structure can function as a molecular ruler to bridge long distances. The structure reveals substantial irregularities and instabilities throughout the coiled coil, which contribute to its low stability in the absence of disulfide bonds. We propose that the irregular coiled coil provides conformational flexibility, ensuring that BST-2/tetherin anchoring both in the plasma membrane and in the newly formed virus membrane is maintained during virus budding.


Asunto(s)
Antígenos CD/química , Membrana Celular/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/química , Liberación del Virus , Animales , Antígenos CD/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , Proteínas Ligadas a GPI , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...