Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535170

RESUMEN

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Asunto(s)
Enfermedad de Huntington , Células-Madre Neurales , Humanos , Animales , Ratones , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/metabolismo , Cuerpo Estriado/metabolismo , Diferenciación Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad
4.
Front Cell Neurosci ; 14: 163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625064

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder in which the striatum is the most affected brain region. Although a chronic inflammatory microglial reaction that amplifies disease progression has been described in HD patients, some murine models develop symptoms without inflammatory microglial activation. Thus, dysfunction of non-inflammatory microglial activity could also contribute to the early HD pathological process. Here, we show the involvement of microglia and particularly fractalkine signaling in the striatal synaptic dysfunction of R6/1 mice. We found reduced fractalkine gene expression and protein concentration in R6/1 striata from 8 to 20 weeks of age. Consistently, we also observed a down-regulation of fractalkine levels in the putamen of HD patients and in HD patient hiPSC-derived neurons. Automated cell morphology analysis showed a non-inflammatory ramified microglia in the striatum of R6/1 mice. However, we found increased PSD-95-positive puncta inside microglia, indicative of synaptic pruning, before HD motor symptoms start to manifest. Indeed, microglia appeared to be essential for striatal synaptic function, as the inhibition of microglial activity with minocycline impaired the induction of corticostriatal long-term depression (LTD) in wild-type mice. Notably, fractalkine administration restored impaired corticostriatal LTD in R6/1 mice. Our results unveil a role for fractalkine-dependent neuron-microglia interactions in the early striatal synaptic dysfunction characteristic of HD.

5.
Mol Neurobiol ; 57(6): 2766-2798, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32356172

RESUMEN

Human pluripotent stem cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a fast feeder-free neuronal differentiation protocol to direct hPSCs to mature forebrain neurons in 37 days in vitro (DIV). The protocol is based upon a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. A human-induced PSC line (Ctr-Q33) and a human embryonic stem cell line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSC-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitor cells (NPCs) with mostly a subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map 2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely "high", "intermediate" and "low" firing neurons. Finally, transplantation experiments showed that the NPCs survived and differentiated within mouse striatum for at least 3 months. NPCs integrated host environmental cues and differentiated into striatal medium-sized spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without teratoma formation. Altogether, these findings demonstrate the potential of this robust human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, pharmacological studies and alternative in vitro toxicology.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cuerpo Estriado/cirugía , Neurogénesis/fisiología , Neuronas/trasplante , Células Madre Pluripotentes/citología , Animales , Línea Celular , Cuerpo Estriado/citología , Humanos , Ratones
6.
PLoS One ; 14(12): e0224901, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31790427

RESUMEN

In Huntington's disease (HD), striatal medium spiny neurons (MSNs) are particularly sensitive to the presence of a CAG repeat in the huntingtin (HTT) gene. However, there are many evidences that cells from the peripheral immune system and central nervous system (CNS) immune cells, namely microglia, play an important role in the etiology and the progression of HD. However, it remains unclear whether MSNs neurodegeneration is mediated by a non-cell autonomous mechanism. The homeostasis in the healthy CNS is maintained by several mechanisms of interaction between all brain cells. Neurons can control microglia activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Due to the complete lack of knowledge about the CD200-CD200R1 system in HD, we determined the temporal patterns of CD200 and CD200R1 expression in the neocortex, hippocampus and striatum in the HD mouse models R6/1 and HdhQ111/7 from pre-symptomatic to manifest stages. In order to explore any alteration in the peripheral immune system, we also studied the levels of expression of CD200 and CD200R1 in whole blood. Although CD200R1 expression was not altered, we observed and increase in CD200 gene expression and protein levels in the brain parenchyma of all the regions we examined, along with HD pathogenesis in R6/1 mice. Interestingly, the expression of CD200 mRNA was also up-regulated in blood following a similar temporal pattern. These results suggest that canonical neuronal-microglial communication through CD200-CD200R1 interaction is not compromised, and CD200 up-regulation in R6/1 brain parenchyma could represent a neurotrophic signal to sustain or extend neuronal function in the latest stages of HD as pro-survival mechanism.


Asunto(s)
Antígenos CD/genética , Enfermedad de Huntington/genética , Regulación hacia Arriba , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/metabolismo , Humanos , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Neostriado/metabolismo , ARN Mensajero/genética
7.
Mol Neurobiol ; 56(2): 935-953, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29804232

RESUMEN

Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75NTR expression. Genetic normalization of p75NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75NTR could be promising to prevent motor deficits in HD.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Cuerpo Estriado/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad de Huntington/genética , Ratones Transgénicos , Neuronas/metabolismo , Receptor trkB/metabolismo
8.
Development ; 144(8): 1566-1577, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28289129

RESUMEN

Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He-/- mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development.


Asunto(s)
Cuerpo Estriado/citología , Proteínas de Unión al ADN/metabolismo , Globo Pálido/citología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Recuento de Células , Puntos de Control del Ciclo Celular , Muerte Celular , Proliferación Celular , Ciclina E/metabolismo , Fase G1 , Ratones Noqueados , Actividad Motora , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Fenotipo , Fase S
9.
Hum Mol Genet ; 24(17): 4958-70, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26063761

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.


Asunto(s)
Astrocitos/metabolismo , Clorhidrato de Fingolimod/farmacología , Hipocampo/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , AMP Cíclico/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Clorhidrato de Fingolimod/administración & dosificación , Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/patología , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inflamación/metabolismo , Inflamación/patología , Ratones , ARN Mensajero/genética , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Factor de Crecimiento Nervioso , Regulación hacia Arriba
10.
Hum Mol Genet ; 24(17): 5040-52, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26082469

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedad de Huntington/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Atrofia , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Cognición , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Actividad Motora/genética , Fenotipo
11.
J Neurosci ; 32(48): 17172-85, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197710

RESUMEN

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Oligodendroglía/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Rombencéfalo/embriología , Factores de Transcripción/metabolismo
12.
Genes Dev ; 25(8): 831-44, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21498572

RESUMEN

Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.


Asunto(s)
Neurogénesis/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Linfangiogénesis/genética , Linfangiogénesis/fisiología , Ratones , Ratones Mutantes , Microscopía Electrónica de Transmisión , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
13.
J Comp Neurol ; 512(1): 74-83, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18973275

RESUMEN

Genetic labeling based on the Cre/lox reporter system has allowed the creation of fate maps for progenitor cells and their offspring. In the diencephalon, pools of progenitors express the plp transcripts in the zona limitans intrathalamica (ZLI), the basal plate of the diencephalon (bpD), and the posterior part of the hypothalamus. We used plp-Cre transgenics crossed with either Rosa26-lox-lacZ (R26R) or actin-lox gfp (Z/EG) reporter mice to investigate the progeny of plp-expressing ventricular cells in the diencephalon. We describe the subpopulations of prethalamic neurons derived from plp-activated progenitors, their possible migratory routes as development proceeds, and their final positional identity. Neurons derived from plp-expressing progenitors issued from the ZLI contribute to GABAergic cells in the zona incerta, the subgeniculate nucleus, the ventral lateral geniculate, and the intergeniculate leaflet. Plp(+) progenitors in the bpD and posterior hypothalamus appear to generate glutamatergic neurons in the subthalamic nucleus and GABAergic neurons in the mammillary and retromammillary tegmentum derivatives. In all these nuclei the contribution of plp(+) progenitors is only partial, illustrating the heterogeneity of origin of neurons in prethalamic and caudal hypothalamic nuclei.


Asunto(s)
Neuronas/fisiología , Células Madre/fisiología , Tálamo , Animales , Movimiento Celular/fisiología , Forma de la Célula , Genes Reporteros , Ratones , Ratones Transgénicos , Neuronas/citología , Células Madre/citología , Tálamo/citología , Tálamo/embriología
14.
J Neurosci ; 28(30): 7624-36, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18650339

RESUMEN

White matter axons organize into fascicles that grow over long distances and traverse very diverse environments. The molecular mechanisms preserving this structure of white matter axonal tracts are not well known. Here, we used the optic nerve as a model and investigated the role of TAG-1, a cell adhesion molecule expressed by retinal axons. TAG-1 was first expressed in the embryonic retinal ganglion cells (RGCs) and later in the postnatal myelin-forming cells in the optic nerve. We describe the consequences of genetic loss of Tag-1 on the developing and adult retinogeniculate tract. Tag-1-null embryos display anomalies in the caliber of RGC axons, associated with an abnormal organization of the astroglial network in the optic nerve. The contralateral projections in the lateral geniculate nucleus are expanded postnatally. In the adult, Tag-1-null mice show a loss of RGC axons, with persistent abnormalities of axonal caliber and additional cytoskeleton and myelination defects. Therefore, TAG-1 is an essential regulator of the structure of RGC axons and their surrounding glial cells in the optic nerve.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Vaina de Mielina/metabolismo , Nervio Óptico/metabolismo , Retina/citología , Células Ganglionares de la Retina/citología , Animales , Animales Recién Nacidos , Axones/ultraestructura , Moléculas de Adhesión Celular Neuronal/deficiencia , Células Cultivadas , Contactina 2 , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Nervio Óptico/ultraestructura , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/ultraestructura , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...