Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794509

RESUMEN

A hybrid synthetic-natural, thermoresponsive graft copolymer composed of poly(N-isopropyl acrylamide) (PNIPAM) side chains, prepared via RAFT polymerization, and a chitosan (Chit) polysaccharide backbone, was synthesized via radical addition-fragmentation reactions using the "grafting to" technique, in aqueous solution. ATR-FTIR, TGA, polyelectrolyte titrations and 1H NMR spectroscopy were employed in order to validate the Chit-g-PNIPAM copolymer chemical structure. Additionally, 1H NMR spectra and back conductometric titration were utilized to quantify the content of grafted PNIPAM side chains. The resulting graft copolymer contains dual functionality, namely both pH responsive free amino groups, with electrostatic complexation/coordination properties, and thermoresponsive PNIPAM side chains. Particle size measurements via dynamic light scattering (DLS) were used to study the thermoresponsive behavior of the Chit-g-PNIPAM copolymer. Thermal properties examined by TGA showed that, by the grafting modification with PNIPAM, the Chit structure became more thermally stable. The lower critical solution temperature (LCST) of the copolymer solution was determined by DLS measurements at 25-45 °C. Furthermore, dynamic and electrophoretic light scattering measurements demonstrated that the Chit-g-PNIPAM thermoresponsive copolymer is suitable of binding DNA molecules and forms nanosized polyplexes at different amino to phosphate groups ratios, with potential application as gene delivery systems.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251161

RESUMEN

Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4. A wide range of parameters were investigated: the alcohol-water content in the zein solutions, the charge molar ratios, the solution addition order and the addition rate. The resulting nanoparticles were characterized by dynamic and electrophoretic light scattering, circular dichroism and scanning electron microscopy. The smallest size for the NPECs (100 nm) was obtained when the polysaccharides acted as the titrate with an addition rate of 0.03 mL·min-1. The NPECs with the best characteristics were selected for loading with ciprofloxacin and then deposited on a cellulosic material in order to evaluate their antibacterial activity. Substantial drug encapsulation with desired drug release profiles were found together with notable antibacterial efficiency, showing the tunability of the properties for both the zein and its complexes with polysaccharides, together with their application potential in the biomedical field.

3.
Polymers (Basel) ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112095

RESUMEN

The modification of inorganic surfaces with weak cationic polyelectrolytes by direct deposition through precipitation is a fast approach to generating composites with high numbers of functional groups. The core/shell composites present very good sorption capacity for heavy metal ions and negatively charged organic molecules from aqueous media. The sorbed amount of lead ions, used as a model for priority pollutants such as heavy metals, and diclofenac sodium salt, as an organic contaminant model for emerging pollutants, depended strongly on the organic content of the composite and less on the nature of contaminants, due to the different retention mechanisms (complexation vs. electrostatics/hydrophobics). Two experimental approaches were considered: (i) simultaneous adsorption of the two pollutants from a binary mixture and (ii) the sequential retention of each pollutant from monocomponent solutions. The simultaneous adsorption also considered process optimization by using the central composite design methodology to study the univariate effects of contact time and initial solution acidity with the purpose of enabling further practical applications in water/wastewater treatment. Sorbent regeneration after multiple sorption-desorption cycles was also investigated to assess its feasibility. Based on different non-linear regressions, the fitting of four isotherms (Langmuir, Freundlich, Hill, and Redlich-Peterson models) and three kinetics models (pseudo-first order (PFO), pseudo-second order (PSO), and two-compartment first order (TC)) has been carried out. The best agreement with experiments was found for the Langmuir isotherm and the PFO kinetic model. Silica/polyelectrolytes with a high number of functional groups may be considered efficient and versatile sorbents that can be used in wastewater treatment processes.

4.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903718

RESUMEN

This life cycle assessment (LCA) study focused on comparing the environmental performances of two types of synthesis strategies for polyethyleneimine (PEI) coated silica particles (organic/inorganic composites). The classic layer-by-layer and the new approach (one-pot coacervate deposition) were the two synthesis routes that were tested for cadmium ions removal from aqueous solutions by adsorption in equilibrium conditions. Data from the laboratory scale experiments for materials synthesis, testing, and regeneration, were then fed into a life cycle assessment study so that the types and values of environmental impacts associated with these processes could be calculated. Additionally, three eco-design strategies based on material substitution were investigated. The results point out that the one-pot coacervate synthesis route has considerably lower environmental impacts than the layer-by-layer technique. From an LCA methodology point of view, it is important to consider material technical performances when defining the functional unit. From a wider perspective, this research is important as it demonstrates the usefulness of LCA and scenario analysis as environmental support tools for material developers because they highlight environmental hotspots and point out the environmental improvement possibilities from the very early stages of material development.

5.
Nanomaterials (Basel) ; 14(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202488

RESUMEN

Pharmaceuticals and heavy metals pose significant risks to human health and aquatic ecosystems, necessitating their removal from water and wastewater. A promising alternative for this purpose involves their removal by adsorption on composite sorbents prepared using a conventional layer-by-layer (LbL) method or an innovative coacervate direct deposition approach. In this study, four novel composite materials based on a silica core (IS) and a polyelectrolyte coacervate shell were used for the investigation of dynamic adsorption of three heavy metals (lead, nickel and cadmium) and an organic drug model (diclofenac sodium salt, DCF-Na). The four types of composite sorbents were tested for the first time in dynamic conditions (columns with continuous flow), and the column conditions were similar to those used in wastewater treatment plants. The influence of the polyanion nature (poly(acrylic acid) (PAA) vs. poly(sodium methacrylate) (PMAA)), maintaining a constant poly(ethyleneimine) (PEI), and the cross-linking degree (r = 0.1 and r = 1.0) of PEI chains on the immobilization of these pollutants (inorganic vs. organic) on the same type of composite was also studied. The experiments involved both single- and multi-component aqueous solutions. The kinetics of the dynamic adsorption process were examined using two non-linear models: the Thomas and Yoon-Nelson models. The tested sorbents demonstrated good adsorption capacities with affinities for the metal ions in the following order: Pb2+ > Cd2+ > Ni2+. An increase in the initial diclofenac sodium concentration led to an enhanced adsorption capacity of the IS/(PEI-PAA)c-r1 sorbent. The calculated sorption capacities were in good agreement with the adsorption capacity predicted by the Thomas and Yoon-Nelson models. The substantial affinity observed between DCF-Na and a column containing composite microparticles saturated with heavy metal ions was explained.

6.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499328

RESUMEN

Crosslinked porous microparticles have received great attention as drug delivery systems lately due to their unique set of properties: the capability to form various polymer-drug combinations, low immunogenicity, patient compliance and ability to release drugs in a delayed or controlled manner. Moreover, polymers with betaine groups have shown some unique features such as antifouling, antimicrobial activity, biocompatibility and strong hydration properties. Herein, novel porous zwitterionic microparticles were prepared in two stages. The first step involves the synthesis of porous microparticles based on glycidyl methacrylate, N-vinylimidazole and triethyleneglycol dimethacrylate using the suspension polymerization technique, the second step being the synthesis of zwitterionic porous microparticles by polymer-analogous reaction in presence of sodium monochloroacetate as betainization agent. Both types of microparticles were characterized structurally and morphologically by FT-IR spectroscopy, energy dispersive X-ray analysis, scanning electron microscopy, dynamic vapors sorption and mercury porosimetry. The tetracycline loading into crosslinked and zwitterionic microparticles was also performed, the maximum tetracycline loading capacities being 87 mg/g and 135 mg/g, respectively. The drug release mechanism, elucidated by various mathematical models, is controlled by both diffusion and swelling processes as a function of the zwitterionic and/or porous microparticle structure. Both types of microparticles presented antibacterial activity against the two reference strains used in this study: Escherichia coli and Staphylococcus aureus.


Asunto(s)
Sistemas de Liberación de Medicamentos , Metacrilatos , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Metacrilatos/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Preparaciones Farmacéuticas , Tamaño de la Partícula
7.
J Environ Manage ; 321: 115999, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104888

RESUMEN

Design of core/shell composite microparticles for loading/release of organic/inorganic pollutants is of great interest in wastewater treatment. As compared to the classic layer-by-layer strategy, the new approach presented in this study introduced higher organic shell amounts in one-pot deposition step, with less material and energy consumption and lack of toxic by-products formation. Herein, one weak polycation (polyethyleneimine) and two weak polyanions were directly deposited onto silica surface through precipitation of an in-situ formed interpolyelectrolyte coacervate, followed by selective crosslinking with glutaraldehyde and extraction of polyanion chains, confirmed by electrokinetic measurements and FTIR spectra of composites. Twelve composite sorbents were synthesized and tested for adsorption of cadmium, as model heavy metal ion. It was demonstrated that the high sorption occurred onto four newly synthesized composites which is correlated to the deposited shell amount, dependent on the deposition method, polyanion nature and crosslinking ratio. The Cd2+ sorbed amount increased with the polyelectrolyte deposited amount and with the accessibility toward active sorption site, less cross-linked composite shells sorbing higher amounts as compared to strong cross-linked shells, the molar ratio [active site]:[Cd2+] ranging from 16:1 to 26:1. The best fitting of four isotherm (Langmuir, Freundlich, Sips and Toth) and four kinetics (pseudo-first order, pseudo-second order, modified Freundlich and Elovich) models was assessed by the sum of normalized errors, based on different nonlinear regression error functions, and by the Hannah-Quinn information criterion. In general, the best agreement with the experimental data was found for Toth isotherm and the pseudo-second order kinetic model. Efficient regeneration of the sorbents was possible at least three times. The competitive effect of Pb2+ and Ni2+ ions was also studied in simulated and real systems. Silica composite sorbents with polyethyleneimine chains as major component of the shell could be very promising in wastewater treatment processes.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio , Concentración de Iones de Hidrógeno , Metales Pesados/química , Polielectrolitos , Polietileneimina , Dióxido de Silicio , Aguas Residuales/química , Contaminantes Químicos del Agua/química
8.
Gels ; 8(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36135261

RESUMEN

The synthesis of hydrogel beads involving natural polymers is, nowadays, a leading research area. Among natural polymers, starch and chitosan represent two biomolecules with proof of efficiency and low economic impact in various utilization fields. Therefore, herein, the features of hydrogel beads obtained from chitosan and three sorts of starch (potato, wheat and rise starches), grafted with acrylonitrile and then amidoximated, were deeply investigated for their use as sorbents for heavy metal ions and dyes. The hydrogel beads were prepared by ionotropic gelation/covalent cross-linking of chitosan and functionalized starches. The chemical structure of the hydrogel beads was analyzed by FT-IR spectroscopy; their morphology was revealed by optical and scanning electron microscopies, while the influence of the starch functionalization strategies on the crystallinity changes was evaluated by X-ray diffraction. Molecular dynamics simulations were used to reveal the influence of the grafting reactions and grafted structure on the starch conformation in solution and their interactions with chitosan. The sorption capacity of the hydrogel beads was tested in batch experiments, as a function of the beads' features (synthesis protocol, starch sort) and simulated polluted water, which included heavy metal ions (Cu2+, Co2+, Ni2+ and Zn2+) and small organic molecules (Direct Blue 15 and Congo red).

9.
Chemosphere ; 304: 135383, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35718040

RESUMEN

The application of several ion-exchange resins (IExR) with amino and amphoteric functionalities in batch retention of heavy metal ions (HMIs) (Cu(II), Fe(II), Mn(II), Zn(II)) from mono- and multicomponent simulated waters and from real polluted water collected from tailings pond of Tarnita (Suceava, Romania) sterile dump is deeply herein explored. The tested resins exhibited high sorption capacities, as evaluated by atomic absorption spectrometry, results supported by infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The effect of pH on the IExR sorption capacity in competitive condition evidenced the optimum pH where IExR sorption efficiency is maximum. Reutilization of IExR in six consecutive sorption/desorption/regeneration cycles showed their renewable sorption properties. Wheat germination tests demonstrated that the Tarnita collected water had a high toxic effect whereas the resulted supernatant after batch sorption was nontoxic. The study shows that HMIs content after IExR sorption is under the admitted maximum level for surface water, and represents an important step on the efforts to solve the environmental problem in Tarnita area, by removing the main contaminants found in the local river water.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Iones/análisis , Metales Pesados/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis
10.
Biomacromolecules ; 23(1): 89-99, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34965089

RESUMEN

Herein, we report a simple method to obtain hydrophobic surfaces by surface modification with calcium carbonate via diffusion-controlled crystallization using a cheap, versatile, and super-hydrophilic cellulose-based nonwoven material (NWM) as the substrate. To control the CaCO3 crystal growth, the ammonium carbonate diffusion method was applied in the presence of polyanions [poly(acid acrylic), poly(2-acrylamido-2-methylpropanesulfonic acid), and a copolymer which contains 55 mol % 2-acrylamido-2-methylpropanesulfonic acid and 45 mol % acrylic acid] or nonstoichiometric polyelectrolyte complexes with polycations [poly(allylamine hydrochloride) and chitosan] on a pristine NWM and on polycation-treated surfaces. The surface morphology obtained by calcite growth under surface or environmental functional groups' influence and the hydrophilic/hydrophobic character of the composite materials were followed and compared to that of the starting material. The obtained composite materials become hydrophobic, having a contact angle in the range of 110-135°. The capacity of tetracycline sorption and release by selected modified surfaces were followed and compared to the untreated NWM. Also, the biological properties were evaluated in terms of biocompatibility, antibacterial activity, and antifouling capability.


Asunto(s)
Celulosa , Polímeros , Carbonato de Calcio/química , Celulosa/química , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química
11.
Polymers (Basel) ; 13(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34833262

RESUMEN

Advanced wastewater treatment processes are required to implement wastewater reuse in agriculture or industry, the efficient removal of targeted priority and emerging organic & inorganic pollutants being compulsory (due to their eco-toxicological and human health effects, bio-accumulative, and degradation characteristics). Various processes such as membrane separations, adsorption, advanced oxidation, filtration, disinfection may be used in combination with one or more conventional treatment stages, but technical and environmental criteria are important to assess their application. Natural and synthetic polyelectrolytes combined with some inorganic materials or other organic or inorganic polymers create new materials (composites) that are currently used in sorption of toxic pollutants. The recent developments on the synthesis and characterization of composites based on polyelectrolytes, divided according to their macroscopic shape-beads, core-shell, gels, nanofibers, membranes-are discussed, and a correlation of their actual structure and properties with the adsorption mechanisms and removal efficiencies of various pollutants in aqueous media (priority and emerging pollutants or other model pollutants) are presented.

12.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502230

RESUMEN

Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.


Asunto(s)
Antiinfecciosos/farmacología , Betaína/farmacología , Sistemas de Liberación de Medicamentos , Cicatrización de Heridas , Animales , Humanos
13.
Materials (Basel) ; 14(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34361346

RESUMEN

Polyelectrolyte multilayers are versatile materials that are used in a large number of domains, including biomedical and environmental applications. The fabrication of polyelectrolyte multilayers using the layer-by-layer technique is one of the simplest methods to obtain composite functional materials. The properties of the final material can be easily tuned by changing the deposition conditions and the used building blocks. This review presents the main characteristics of polyelectrolyte multilayers, the fabrication methods currently used, and the factors influencing the layer-by-layer assembly of polyelectrolytes. The last section of this paper presents some of the most important applications of polyelectrolyte multilayers, with a special focus on biomedical and environmental applications.

14.
Chemosphere ; 270: 129477, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33388497

RESUMEN

Electrostatically-based layer-by-layer (LbL) assembly is a versatile surface functionalization technique allowing the construction of complex three-dimensional architectures on virtually any type of material using various combinations of nano-bricks. One of the most promising applications of LbL assembled systems is in water purification. The main two strategies developed in this purpose consist in either enhancing the barrier properties of separation membranes and in the construction of core-shell organic/inorganic sorbents. In this review, the recent achievements in this topic are discussed with respect to the use of LbL-based composites in desalination and removal of heavy metal ions or organic pollutants. Finally, some works dealing with economic aspects of using LbL assemblies for water purification are presented, thus highlighting forthcoming strategies to develop economically-viable materials for such applications.


Asunto(s)
Purificación del Agua , Iones
15.
ACS Appl Mater Interfaces ; 12(33): 37585-37596, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32697568

RESUMEN

Composite solid surfaces with high content of functional groups (FGs) are useful materials in different types of applications requiring stimuli-responsive "hard/soft" architectures, their improved properties rising from the combination of organic-inorganic parts. Among different types of weak polyelectrolytes, poly(ethyleneimine) (PEI) is of great interest in the construction of composite systems with thin layer-by-layer (LbL) organic films due to the large number of amino groups per unit mass of polymer. Herein, the spherical silica microparticles were modified with linear (L) or branched (B) PEI chains using LbL deposition of a copper complex (PEIL-Cu2+ or PEIB-Cu2+) and poly(acrylic acid) (PAA), glutaraldehyde selective cross-linking, followed by copper and PAA extraction from the multilayer. The newly formed silica/(PEIL)10 and silica/(PEIB)10 composites were used in batch and column sorption/desorption experiments of four heavy metal ions (Cu2+, Ni2+, Co2+, and Cd2+). In noncompetitive conditions ([FG]/Σ[M2+] > 9), all heavy metal ions were retained on composites, demonstrating the potential application of the prepared functional microparticles in surface water treatment. However, in competitive conditions ([FG]/Σ[M2+] < 9), only Cu2+ is sorbed in high amount (∼2.5 mmol·g-1 PEI) on composites, with simultaneous displacement of already sorbed ions, demonstrating the solid-phase extraction and chromatographic properties of the synthesized silica/(PEIL)n and silica/(PEIB)n composites.

16.
RSC Adv ; 8(41): 23274-23283, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35540166

RESUMEN

Composite microparticles of CaCO3 and two pectin samples (which differ by the functional group ratio) or corresponding nonstoichiometric polyelectrolyte complexes with different molar ratios (0.5, 0.9 and 1.2) are obtained, characterized and tested for loading and release of streptomycin and kanamycin sulphate. The synthesized carriers were characterized before and after drug loading in terms of morphology (by SEM using secondary electron and energy selective backscattered electron detectors), porosity (by water sorption isotherms) and elemental composition (by elemental mapping using energy dispersive X-ray and FTIR spectroscopy). The kinetics of the release mechanism from the microparticles was investigated using Higuchi and Korsmeyer-Peppas mathematical models.

17.
J Inequal Appl ; 2018(1): 309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839825

RESUMEN

New Hermite-Hadamard type inequalities are established. Some corresponding examples are also discussed in detail.

18.
J Inequal Appl ; 2017(1): 265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104403

RESUMEN

The objective of this paper is to establish some new refinements of fractional Hermite-Hadamard inequalities via a harmonically convex function with a kernel containing the generalized Mittag-Leffler function.

19.
ACS Appl Mater Interfaces ; 9(42): 37264-37278, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28972729

RESUMEN

New types of composites were obtained by an autotemplate method for assembling hollow CaCO3 capsules by using pH-sensitive polymers. Five pectin samples, which differ in the methylation degree and/or amide content, and some nonstoichiometric polyelectrolyte complex dispersions, prepared with the pectin samples and poly(allylamine hydrochloride), were used to control the crystal growth. The morphology of the composites was investigated by scanning electron microscopy, and the polymorphs characteristics were investigated by FTIR spectroscopy. The presence of the polymer in the composite particles was evidenced by X-ray photoelectron spectroscopy, particle charge density, and zeta-potential. The new CaCO3/pectin hollow capsules were tested as a possible matrix for a tetracycline hydrochloride carrier. The kinetics of the drug release mechanism was followed using Higuchi and Korsmeyer-Peppas mathematical models.


Asunto(s)
Cápsulas/química , Carbonato de Calcio , Portadores de Fármacos , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Pectinas , Tetraciclina
20.
J Inequal Appl ; 2017(1): 118, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28596696

RESUMEN

In this paper, we derive a new extension of Hermite-Hadamard's inequality via k-Riemann-Liouville fractional integrals. Two new k-fractional integral identities are also derived. Then, using these identities as an auxiliary result, we obtain some new k-fractional bounds which involve k-Appell's hypergeometric functions. These bounds can be viewed as new k-fractional estimations of trapezoidal and mid-point type inequalities. These results are obtained for the functions which have the harmonic convexity property. We also discuss some special cases which can be deduced from the main results of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...