Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2304569, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625078

RESUMEN

Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.

2.
Stem Cell Res Ther ; 14(1): 353, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072933

RESUMEN

BACKGROUND: Ischemia/reperfusion injury is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal stromal cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy; however, their full potential in treating AKI remains unknown. METHODS: In this study, we employed an in vitro model of chemically induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow, and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential), and overall cell metabolism by metabolomics. RESULTS: Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction, and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites. CONCLUSION: Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Secretoma , Isquemia/terapia , Isquemia/metabolismo , Vesículas Extracelulares/metabolismo , Lesión Renal Aguda/terapia , Lesión Renal Aguda/metabolismo , Metabolismo Energético , Oxidación-Reducción , Células Madre Mesenquimatosas/metabolismo , Adenosina Trifosfato/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686004

RESUMEN

Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.


Asunto(s)
Insuficiencia Renal , Toxinas Biológicas , Humanos , Ratas , Ratones , Animales , Perros , Porcinos , Tóxinas Urémicas , Modelos Animales , Creatinina , Cabras , Indicán
4.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569805

RESUMEN

Patients with end-stage kidney disease (ESKD) suffer from high levels of protein-bound uremic toxins (PBUTs) that contribute to various comorbidities. Conventional dialysis methods are ineffective in removing these PBUTs. A potential solution could be offered by a bioartificial kidney (BAK) composed of porous membranes covered by proximal tubule epithelial cells (PTECs) that actively secrete PBUTs. However, BAK development is currently being hampered by a lack of knowledge regarding the cytocompatibility of the dialysis fluid (DF) that comes in contact with the PTECs. Here, we conducted a comprehensive functional assessment of the DF on human conditionally immortalized PTECs (ciPTECs) cultured as monolayers in well plates, on Transwell® inserts, or on hollow fiber membranes (HFMs) that form functional units of a BAK. We evaluated cell viability markers, monolayer integrity, and PBUT clearance. Our results show that exposure to DF did not affect ciPTECs' viability, membrane integrity, or function. Seven anionic PBUTs were efficiently cleared from the perfusion fluid containing a PBUTs cocktail or uremic plasma, an effect which was enhanced in the presence of albumin. Overall, our findings support that the DF is cytocompatible and does not compromise ciPTECs function, paving the way for further advancements in BAK development and its potential clinical application.


Asunto(s)
Fallo Renal Crónico , Toxinas Biológicas , Humanos , Diálisis Renal/métodos , Tóxinas Urémicas , Fallo Renal Crónico/terapia , Fallo Renal Crónico/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Soluciones para Diálisis/metabolismo , Toxinas Biológicas/metabolismo
5.
Nat Rev Nephrol ; 19(8): 481-490, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277461

RESUMEN

Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.


Asunto(s)
Riñones Artificiales , Dispositivos Electrónicos Vestibles , Humanos , Calidad de Vida , Diálisis Renal , Soluciones para Diálisis
7.
Front Physiol ; 13: 1048738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569770

RESUMEN

The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.

8.
Tissue Eng Part C Methods ; 28(8): 440-456, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35658619

RESUMEN

Macrophages have a commanding role in scaffold-driven in situ tissue regeneration. Depending on their polarization state, macrophages mediate the formation and remodeling of new tissue by secreting growth factors and cytokines. Therefore, successful outcomes of material-driven in situ tissue vascular tissue engineering depend largely on the immuno-regenerative potential of the recipient. A large cohort of patients requiring vascular replacements suffers from systemic multifactorial diseases, such as diabetes, which gives rise to a hyperglycemic and aggressive oxidative inflammatory environment that is hypothesized to hamper a well-balanced regenerative process. Here, we aimed at fundamentally exploring the effects of hyperglycemia, as one of the hallmarks of diabetes, on the macrophage response to three-dimensional (3D) electrospun synthetic biomaterials for in situ tissue engineering, in terms of inflammatory profile and tissue regenerative capacity. To simulate the early phases of the in situ regenerative cascade, we used a bottom-up in vitro approach. Primary human macrophages (n = 8 donors) were seeded in two-dimensional (2D) culture wells and polarized to pro-inflammatory M1 and anti-inflammatory M2 phenotype in normoglycemic (5.5 mM glucose), hyperglycemic (25 mM), and osmotic control (OC) conditions (5.5 mM glucose, 19.5 mM mannitol). Unpolarized macrophages and (myo)fibroblasts were seeded in mono- or co-culture in a 3D electrospun resorbable polycaprolactone bisurea scaffold and exposed to normoglycemic, hyperglycemic, and OC conditions. The results showed that macrophage polarization by biochemical stimuli was effective under all glycemic conditions and that the polarization states dictated expression of the receptors SCL2A1 (glucose transporter 1) and CD36 (fatty acid transporter). In 3D, the macrophage response to hyperglycemic conditions was strongly donor-dependent in terms of phenotype, cytokine secretion profile, and metabolic receptor expression. When co-cultured with (myo)fibroblasts, hyperglycemic conditions led to an increased expression of fibrogenic markers (ACTA2, COL1, COL3, IL-1ß). Together, these findings show that the hyperglycemic and hyperosmotic conditions may, indeed, influence the process of macrophage-driven in situ tissue engineering, and that the extent of this is likely to be patient-specific. Impact Statement Success or failure of cell-free bioresorbable in situ tissue-engineered vascular grafts hinges around the immuno-regenerative response of the recipient. Most patients requiring blood vessel replacements suffer from additional multifactorial diseases, such as diabetes, which may compromise their intrinsic regenerative potential. In this study, we used a bottom-up approach to study the effects of hyperglycemia, a hallmark of diabetes, on important phases in the in situ regenerative cascade, such as macrophage polarization and macrophage-myofibroblast crosstalk. The results demonstrate a relatively large donor-to-donor variation, which stresses the importance of taking scaffold-independent patient-specific factors into account when studying in situ biomaterial-driven tissue engineering.


Asunto(s)
Materiales Biocompatibles , Hiperglucemia , Materiales Biocompatibles/farmacología , Glucosa/farmacología , Humanos , Hiperglucemia/metabolismo , Macrófagos , Ingeniería de Tejidos/métodos
9.
Pediatr Nephrol ; 37(12): 2985-2996, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35286457

RESUMEN

Chronic kidney disease (CKD) is a major healthcare burden that takes a toll on the quality of life of many patients. Emerging evidence indicates that a substantial proportion of these patients carry a genetic defect that contributes to their disease. Any effort to reduce the percentage of patients with a diagnosis of nephropathy heading towards kidney replacement therapies should therefore be encouraged. Besides early genetic screenings and registries, in vitro systems that mimic the complexity and pathophysiological aspects of the disease could advance the screening for targeted and personalized therapies. In this regard, the use of patient-derived cell lines, as well as the generation of disease-specific cell lines via gene editing and stem cell technologies, have significantly improved our understanding of the molecular mechanisms underlying inherited kidney diseases. Furthermore, organs-on-chip technology holds great potential as it can emulate tissue and organ functions that are not found in other, more simple, in vitro models. The personalized nature of the chips, together with physiologically relevant read-outs, provide new opportunities for patient-specific assessment, as well as personalized strategies for treatment. In this review, we summarize the major kidney-on-chip (KOC) configurations and present the most recent studies on the in vitro representation of genetic kidney diseases using KOC-driven strategies.


Asunto(s)
Dispositivos Laboratorio en un Chip , Insuficiencia Renal Crónica , Humanos , Calidad de Vida , Riñón , Pruebas Genéticas , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/terapia
10.
Biomed Chromatogr ; 36(5): e5307, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34978088

RESUMEN

Proximal tubular damage is an important prognostic determinant in various chronic kidney diseases (CKDs). Currently available diagnostic methods do not allow for early disease detection and are neither efficient. Indoxyl sulfate (IS) is an endogenous metabolite and protein-bound uremic toxin that is eliminated via renal secretion, but accumulates in plasma during tubular dysfunction. Therefore, it may be suitable as a tubular function marker. To evaluate this, a fast bioanalytical method was developed and validated for IS in various species and a kidney cell line using LC-MS/MS. An isotope-labeled IS potassium salt as an internal standard and acetonitrile (ACN) as a protein precipitant were used for sample pretreatment. The analyte was separated on a Polaris 3 C18-A column by gradient elution using 0.1% formic acid in water and ACN, and detected by negative electrospray ionization in selected reaction monitoring mode. The within-day (≤ 4.0%) and between-day (≤ 4.3%) precisions and accuracies (97.7 to 107.3%) were within the acceptable range. The analyte showed sufficient stability at all conditions investigated. Finally, applying this assay, significantly higher plasma and lower urine concentrations of IS were observed in mice with diabetic nephropathy with tubular damage, which encourages validation toward its use as a biomarker.


Asunto(s)
Indicán , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Riñón , Ratones , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
11.
Toxins (Basel) ; 13(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34678967

RESUMEN

Research has shown that traditional dialysis is an insufficient long-term therapy for patients suffering from end-stage kidney disease due to the high retention of uremic toxins in the blood as a result of the absence of the active transport functionality of the proximal tubule (PT). The PT's function is defined by the epithelial membrane transporters, which have an integral role in toxin clearance. However, the intricate PT transporter-toxin interactions are not fully explored, and it is challenging to decouple their effects in toxin removal in vitro. Computational models are necessary to unravel and quantify the toxin-transporter interactions and develop an alternative therapy to dialysis. This includes the bioartificial kidney, where the hollow dialysis fibers are covered with kidney epithelial cells. In this integrated experimental-computational study, we developed a PT computational model that focuses on indoxyl sulfate (IS) transport by organic anionic transporter 1 (OAT1), capturing the transporter density in detail along the basolateral cell membrane as well as the activity of the transporter and the inward boundary flux. The unknown parameter values of the OAT1 density (1.15×107 transporters µm-2), IS uptake (1.75×10-5 µM-1 s-1), and dissociation (4.18×10-4 s-1) were fitted and validated with experimental LC-MS/MS time-series data of the IS concentration. The computational model was expanded to incorporate albumin conformational changes present in uremic patients. The results suggest that IS removal in the physiological model was influenced mainly by transporter density and IS dissociation rate from OAT1 and not by the initial albumin concentration. While in uremic conditions considering albumin conformational changes, the rate-limiting factors were the transporter density and IS uptake rate, which were followed closely by the albumin-binding rate and IS dissociation rate. In summary, the results of this study provide an exciting avenue to help understand the toxin-transporter complexities in the PT and make better-informed decisions on bioartificial kidney designs and the underlining transporter-related issues in uremic patients.


Asunto(s)
Indicán/metabolismo , Túbulos Renales Proximales/fisiología , Proteína 1 de Transporte de Anión Orgánico/fisiología , Albúminas/metabolismo , Transporte Biológico , Simulación por Computador , Humanos , Proteínas de Transporte de Membrana/fisiología , Toxinas Biológicas/metabolismo , Uremia/metabolismo
12.
Eur J Pharmacol ; 908: 174378, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34303664

RESUMEN

Diabetic kidney disease (DKD) is the foremost cause of renal failure. While the glomeruli are severely affected in the course of the disease, the main determinant for disease progression is the tubulointerstitial compartment. DKD does not develop in the absence of hyperglycemia. Since the proximal tubule is the major player in glucose reabsorption, it has been widely studied as a therapeutic target for the development of new therapies. Currently, there are several proximal tubule cell lines available, being the human kidney-2 (HK-2) and human kidney clone-8 (HKC-8) cell lines the ones widely used for studying mechanisms of DKD. Studies in these models have pushed forward the understanding on how DKD unravels, however, these cell culture models possess limitations that hamper research, including lack of transporters and dedifferentiation. The sodium-glucose cotransporters (SGLT) are identified as key players in glucose reabsorption and pharmacological inhibitors have shown to be beneficial for the long-term clinical outcome in DKD. However, their mechanism of action has, as of yet, not been fully elucidated. To comprehend the protective effects of SGLT inhibitors, it is essential to understand the complete functional, structural, and molecular features of the disease, which until now have been difficult to recapitulate. This review addresses the molecular events of diabetic proximal tubulopathy. In addition, we evaluate the protective role of SGLT inhibitors in cardiovascular and renal outcomes, and provide an overview of various in vitro models mimicking diabetic proximal tubulopathy used so far. Finally, new insights on advanced in vitro systems to surpass past limitations are postulated.


Asunto(s)
Inhibidores del Cotransportador de Sodio-Glucosa 2 , Nefropatías Diabéticas , Humanos , Hipoglucemiantes , Transportador 2 de Sodio-Glucosa
13.
ACS Appl Mater Interfaces ; 12(51): 56723-56730, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33305561

RESUMEN

The application of stem cell-derived secretome in regenerative therapies offers the key advantage that instead of the stem cells, only their effective paracrine compounds are in vivo delivered. Ideally, the secretome can be steered by the culture conditions of the stem cells. So far, most studies use stem cells cultured on stiff plastic substrates, not representative of their native 3D environment. In this study, cells are cultured inside synthetic polyisocyanide (PIC)-based hydrogels, which are minimal, tailorable, and highly reproducible biomimetic matrices. Secretome analysis of human adipose-derived stem cells (multiplex, ELISA) displays that matrix manipulation is a powerful tool to direct the secretome composition. As an example, cells in nonadherent PIC gels secrete increased levels of IL-10 and the conditioned media from 3D culture accelerate wound closure. In all, our PIC-based approach opens the door to dedicated matrix design to engineer the secretome for custom applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/fisiología , Fibroblastos/metabolismo , Humanos , Interleucina-10/metabolismo , Oligopéptidos/química , Polímeros/química , Cicatrización de Heridas/fisiología
14.
Toxins (Basel) ; 12(6)2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545617

RESUMEN

In chronic kidney disease (CKD), the secretion of uremic toxins is compromised leading to their accumulation in blood, which contributes to uremic complications, in particular cardiovascular disease. Organic anion transporters (OATs) are involved in the tubular secretion of protein-bound uremic toxins (PBUTs). However, OATs also handle a wide range of drugs, including those used for treatment of cardiovascular complications and their interaction with PBUTs is unknown. The aim of this study was to investigate the interaction between commonly prescribed drugs in CKD and endogenous PBUTs with respect to OAT1-mediated uptake. We exposed a unique conditionally immortalized proximal tubule cell line (ciPTEC) equipped with OAT1 to a panel of selected drugs, including angiotensin-converting enzyme inhibitors (ACEIs: captopril, enalaprilate, lisinopril), angiotensin receptor blockers (ARBs: losartan and valsartan), furosemide and statins (pravastatin and simvastatin), and evaluated the drug-interactions using an OAT1-mediated fluorescein assay. We show that selected ARBs and furosemide significantly reduced fluorescein uptake, with the highest potency for ARBs. This was exaggerated in presence of some PBUTs. Selected ACEIs and statins had either no or a slight effect at supratherapeutic concentrations on OAT1-mediated fluorescein uptake. In conclusion, we demonstrate that PBUTs may compete with co-administrated drugs commonly used in CKD management for renal OAT1 mediated secretion, thus potentially compromising the residual renal function.


Asunto(s)
Túbulos Renales/efectos de los fármacos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Medicamentos bajo Prescripción/farmacología , Eliminación Renal/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Toxinas Biológicas/sangre , Uremia/tratamiento farmacológico , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Línea Celular , Furosemida/farmacología , Humanos , Túbulos Renales/metabolismo , Túbulos Renales/fisiopatología , Medicamentos bajo Prescripción/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Uremia/sangre , Uremia/fisiopatología
15.
ACS Omega ; 5(8): 3908-3916, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32149217

RESUMEN

The construction of scaffolds and subsequent incorporation of cells and biologics have been widely investigated to regenerate damaged tissues. Scaffolds act as a template to guide tissue formation, and their characteristics have a considerable impact on the regenerative process. Whereas many technologies exist to induce specific two-dimensional (2D) morphologies into biomaterials, the introduction of three-dimensional (3D) micromorphologies into individual pore walls of scaffolds produced from biological molecules such as collagen poses a challenge. We here report the use of dicarboxylic acids to induce specific micromorphologies in collagen scaffolds and evaluate their effect on cellular migration and differentiation. Insoluble type I collagen fibrils were suspended in monocarboxylic and dicarboxylic acids of different concentrations, and unidirectional and random pore scaffolds were constructed by freezing and lyophilization. The application of various acids and concentrations resulted in variations in 3D micromorphologies, including wall structure, wall thickness, and pore size. The use of dicarboxylic acids resulted in acid-specific micromorphologies, whereas monocarboxylic acids did not. Dicarboxylic acids with an odd or even number of C-atoms resulted in frayed/fibrillar or smooth wall structures, respectively, with varying appearances. The formation of micromorphologies was concentration-dependent. In vitro analysis indicated the cytocompatibility of scaffolds, and micromorphology-related cell behavior was indicated by enhanced myosin staining and myosin heavy chain gene expression for C2C12 myoblasts cultured on scaffolds with frayedlike micromorphologies compared to those with smooth micromorphologies. In conclusion, porous collagen scaffolds with various intrawall 3D micromorphologies can be constructed by application of dicarboxylic acids, superimposing the second level of morphology to the overall scaffold structure. Acid crystal formation is key to the specific micromorphologies observed and can be explained by the odd/even theory for dicarboxylic acids. Scaffolds with a 3D micrometer-defined topography may be used as a screening platform to select optimal substrates for the regeneration of specific tissues.

16.
Arch Toxicol ; 93(12): 3397-3418, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31664498

RESUMEN

The kidney is frequently involved in adverse effects caused by exposure to foreign compounds, including drugs. An early prediction of those effects is crucial for allowing novel, safe drugs entering the market. Yet, in current pharmacotherapy, drug-induced nephrotoxicity accounts for up to 25% of the reported serious adverse effects, of which one-third is attributed to antimicrobials use. Adverse drug effects can be due to direct toxicity, for instance as a result of kidney-specific determinants, or indirectly by, e.g., vascular effects or crystals deposition. Currently used in vitro assays do not adequately predict in vivo observed effects, predominantly due to an inadequate preservation of the organs' microenvironment in the models applied. The kidney is highly complex, composed of a filter unit and a tubular segment, together containing over 20 different cell types. The tubular epithelium is highly polarized, and the maintenance of this polarity is critical for optimal functioning and response to environmental signals. Cell polarity is dependent on communication between cells, which includes paracrine and autocrine signals, as well as biomechanic and chemotactic processes. These processes all influence kidney cell proliferation, migration, and differentiation. For drug disposition studies, this microenvironment is essential for prediction of toxic responses. This review provides an overview of drug-induced injuries to the kidney, details on relevant and translational biomarkers, and advances in 3D cultures of human renal cells, including organoids and kidney-on-a-chip platforms.


Asunto(s)
Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Biomarcadores Farmacológicos/análisis , Humanos , Técnicas In Vitro , Riñón/fisiopatología , Pruebas de Toxicidad/instrumentación
17.
Biomacromolecules ; 20(2): 826-834, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30608161

RESUMEN

One of the promises of synthetic materials in cell culturing is that control over their molecular structures may ultimately be used to control their biological processes. Synthetic polymer hydrogels from polyisocyanides (PIC) are a new class of minimal synthetic biomaterials for three-dimensional cell culturing. The macromolecular lengths and densities of biofunctional groups that decorate the polymer can be readily manipulated while preserving the intrinsic nonlinear mechanics, a feature commonly displayed by fibrous biological networks. In this work, we propose the use of PIC gels as cell culture platforms with decoupled mechanical inputs and biological cues. For this purpose, different types of cells were encapsulated in PIC gels of tailored compositions that systematically vary in adhesive peptide (GRGDS) density, polymer length, and concentration; with the last two parameters controlling the gel mechanics. Both cancer and smooth muscle cells grew into multicellular spheroids with proliferation rates that depend on the adhesive GRGDS density, regardless of the polymer length, suggesting that for these cells, the biological input prevails over the mechanical cues. In contrast, human adipose-derived stem cells do not form spheroids but rather spread out. We find that the morphological changes strongly depend on the adhesive ligand density and the network mechanics; gels with the highest GRGDS densities and the strongest stiffening response to stress show the strongest spreading. Our results highlight the role of the nonlinear mechanics of the extracellular matrix and its synthetic mimics in the regulation of cell functions.


Asunto(s)
Adhesión Celular , Matriz Extracelular/química , Hidrogeles/química , Proliferación Celular , Células Cultivadas , Cianuros/química , Elasticidad , Células HeLa , Humanos , Hidrogeles/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Oligopéptidos/química , Andamios del Tejido/química
18.
ACS Biomater Sci Eng ; 4(9): 3282-3290, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30221191

RESUMEN

Clinical implementation of novel products for tissue engineering and regenerative medicine requires a validated sterilization method. In this study, we investigated the effect of γ-irradiation and EtO degassing on material characteristics in vitro and the effect on template remodeling of hybrid tubular constructs in a large animal model. Hybrid tubular templates were prepared from type I collagen and Vicryl polymers and sterilized by 25 kGray of γ-irradiation or EtO degassing. The in vitro characteristics were extensively studied, including tensile strength analysis and degradation studies. For in vivo evaluation, constructs were subcutaneously implanted in goats for 1 month to form vascularized neo-tissue. Macroscopic and microscopic appearances of the γ- and EtO-sterilized constructs slightly differed due to additional processing required for the COL-Vicryl-EtO constructs. Regardless of the sterilization method, incubation in urine resulted in fast degradation of the Vicryl polymer and decreased strength (<7 days). Incubation in SBF was less invasive, and strength was maintained for at least 14 days. The difference between the two sterilization methods was otherwise limited. In contrast, subcutaneous implantation showed that the effect of sterilization was considerable. A well-vascularized tube was formed in both cases, but the γ-irradiated construct showed an organized architecture of vasculature and was mechanically more comparable to the native ureter. Moreover, the γ-irradiated construct showed advanced tissue remodeling as shown by enhanced ECM production. This study shows that the effect of sterilization on tissue remodeling cannot be predicted by in vitro analyses alone. Thus, validated sterilization methods should be incorporated early in the development of tissue engineered products, and this requires both in vitro and in vivo analyses.

19.
Expert Rev Med Devices ; 15(5): 323-336, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29633900

RESUMEN

INTRODUCTION: Since the advent of peritoneal dialysis (PD) in the 1970s, the principles of dialysis have changed little. In the coming decades, several major breakthroughs are expected. AREAS COVERED: Novel wearable and portable dialysis devices for both hemodialysis (HD) and PD are expected first. The HD devices could facilitate more frequent and longer dialysis outside of the hospital, while improving patient's mobility and autonomy. The PD devices could enhance blood purification and increase technique survival of PD. Further away from clinical application is the bioartificial kidney, containing renal cells. Initially, the bioartificial kidney could be applied for extracorporeal treatment, to partly replace renal tubular endocrine, metabolic, immunoregulatory and secretory functions. Subsequently, intracorporeal treatment may become possible. EXPERT COMMENTARY: Key factors for successful implementation of miniature dialysis devices are patient attitudes and cost-effectiveness. A well-functioning and safe extracorporeal blood circuit is required for HD. For PD, a double lumen PD catheter would optimize performance. Future research should focus on further miniaturization of the urea removal strategy. For the bio-artificial kidney (BAK), cost effectiveness should be determined and a general set of functional requirements should be defined for future studies. For intracorporeal application, water reabsorption will become a major challenge.


Asunto(s)
Ingeniería Biomédica , Riñones Artificiales , Diálisis Renal , Humanos , Miniaturización , Investigación Biomédica Traslacional
20.
J Tissue Eng Regen Med ; 11(7): 1998-2013, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-26510831

RESUMEN

Bone formation relies on complex processes that require well-orchestrated interactions between several cell types, such as bone-forming cells (osteoblasts, OBs) and endothelial cells (ECs). Their co-culture has been proved relevant to mimicking specific features of the bone niche. Here we propose the co-culture of microvascular-like ECs and pre-OBs, both derived from the SSEA-4+ cell subpopulation from the stromal vascular fraction of human adipose tissue (SSEA-4+ hASCs), to define the conditions in which cells synergistically communicate to support the full differentiation of pre-OBs and maintenance of the EC phenotype. Co-cultures of different ratios of the two cell types were established and maintained for up to 21 days in standard endothelial maintenance (ENDO) and osteogenic differentiation (OST) media, as well as in a mixture of these (MIX). The osteogenic maturation of pre-OBs (ALP activity, OPN and OCN expression, calcium deposition), the evolution of EC numbers (CD31+ cells) and maintenance of the endothelial phenotype (CD31 and vWF expression, LDL uptake) were assessed throughout the culture time as a function of cell ratio and culture media. The results obtained demonstrate that EC number has a significant effect on the osteogenic differentiation of pre-OBs, depending on the medium used. While in ENDO medium the osteogenic differentiation was not observed, in the OST and MIX media it was attained at similar levels, except for the co-culture with a higher number of ECs in MIX medium. These findings demonstrate that the use of SSEA-4+ hASCs as a single-cell source is promising to attain 3D bone-like models with the potential to promote vascularized bone tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Tejido Adiposo/metabolismo , Antígenos de Diferenciación/metabolismo , Diferenciación Celular , Células Endoteliales/metabolismo , Osteogénesis , Antígenos Embrionarios Específico de Estadio , Tejido Adiposo/citología , Adulto , Células Endoteliales/citología , Femenino , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...