Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rheumatology (Oxford) ; 62(1): 347-359, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35412596

RESUMEN

OBJECTIVE: To explore and define the molecular cause(s) of a multi-generational kindred affected by Bechet's-like mucocutaneous ulcerations and immune dysregulation. METHODS: Whole genome sequencing and confirmatory Sanger sequencing were performed. Components of the NFκB pathway were quantified by immunoblotting, and function was assessed by cytokine production (IL-6, TNF-α, IL-1ß) after lipopolysaccharide (LPS) stimulation. Detailed immunophenotyping of T-cell and B-cell subsets was performed in four patients from this cohort. RESULTS: A novel variant in the RELA gene, p. Tyr349LeufsTer13, was identified. This variant results in premature truncation of the protein before the serine (S) 536 residue, a key phosphorylation site, resulting in enhanced degradation of the p65 protein. Immunoblotting revealed significantly decreased phosphorylated [p]p65 and pIκBα. The decrease in [p]p65 may suggest reduced heterodimer formation between p50/p65 (NFκB1/RelA). Immunophenotyping revealed decreased naïve T cells, increased memory T cells, and expanded senescent T-cell populations in one patient (P1). P1 also had substantially higher IL-6 and TNF-α levels post-stimulation compared with the other three patients. CONCLUSION: Family members with this novel RELA variant have a clinical phenotype similar to other reported RELA cases with predominant chronic mucocutaneous ulceration; however, the clinical phenotype broadens to include Behçet's syndrome and IBD. Here we describe the clinical, immunological and genetic evaluation of a large kindred to further expand identification of patients with autosomal dominant RELA deficiency, facilitating earlier diagnosis and intervention. The functional impairment of the canonical NFκB pathway suggests that this variant is causal for the clinical phenotype in these patients.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , FN-kappa B
2.
Artículo en Inglés | MEDLINE | ID: mdl-34667072

RESUMEN

There is increasing recognition for the contribution of genetic mosaicism to human disease, particularly as high-throughput sequencing has enabled detection of sequence variants at very low allele frequencies. Here, we describe an infant male who presented at 9 mo of age with hypotonia, dysmorphic features, congenital heart disease, hyperinsulinemic hypoglycemia, hypothyroidism, and bilateral sensorineural hearing loss. Whole-genome sequencing of the proband and the parents uncovered an apparent de novo mutation in the X-linked SMS gene. SMS encodes spermine synthase, which catalyzes the production of spermine from spermidine. Inactivation of the SMS gene disrupts the spermidine/spermine ratio, resulting in Snyder-Robinson syndrome. The variant in our patient is absent from the gnomAD and ExAC databases and causes a missense change (p.Arg130Cys) predicted to be damaging by most in silico tools. Although Sanger sequencing confirmed the de novo status in our proband, polymerase chain reaction (PCR) and deep targeted resequencing to ∼84,000×-175,000× depth revealed that the variant is present in blood from the unaffected mother at ∼3% variant allele frequency. Our findings thus provided a long-sought diagnosis for the family while highlighting the role of parental mosaicism in severe genetic disorders.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Mosaicismo , Humanos , Lactante , Masculino , Mutación Missense , Espermina Sintasa/genética
3.
Clin Genet ; 100(6): 775-776, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34476810

RESUMEN

Exon skipping associated with an ATP7B intronic variant in a patient with Wilson's disease. (A) Sashimi plot visualization of aligned RNA sequencing data from proband liver tissue at ATP7B exons 14-13-12. The red track shows traditional RNA-seq data; the blue track shows RNA-seq enriched with exon capture (cDNA-cap) which achieves higher depth of protein-coding transcripts. The histogram indicates overall sequencing depth while arcs tabulate the number of junction-spanning reads supporting exon pairs. (B) The domain structure (top) and exon structure (bottom) of ATP7B. Loss of exon 13 (dashed box) would remove a transmembrane domain and disrupt the first phosphorylation domain.


Asunto(s)
Alelos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Empalme Alternativo , Niño , ATPasas Transportadoras de Cobre , Exones , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/genética , Humanos , Lactante
4.
Artículo en Inglés | MEDLINE | ID: mdl-32532881

RESUMEN

Wilson disease is a medically actionable rare autosomal recessive disorder of defective copper excretion caused by mutations in ATP7B, one of two highly evolutionarily conserved copper-transporting ATPases. Hundreds of disease-causing variants in ATP7B have been reported to public databases; more than half of these are missense changes, and a significant proportion are presumed unequivocal loss-of-function variants (nonsense, frameshift, and canonical splice site). Current molecular genetic testing includes sequencing all coding exons (±10 bp) as well as deletion/duplication testing, with reported sensitivity of >98%. We report a proband from a consanguineous family with a biochemical phenotype consistent with early-onset Wilson disease who tested negative on conventional molecular genetic testing. Using a combination of whole-genome sequencing and transcriptome sequencing, we found that the proband's disease is due to skipping of exons 6-7 of the ATP7B gene associated with a novel intronic variant (NM_000053.4:c.1947-19T > A) that alters a putative splicing enhancer element. This variant was also homozygous in the proband's younger sister, whose subsequent clinical evaluations revealed biochemical evidence of Wilson disease. Our work adds to emerging evidence that ATP7B exon skipping from deep intronic variants outside typical splice junctions is an important mechanism of Wilson disease; the variants responsible may elude standard genetic testing.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , Exones , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/genética , Intrones , Mutación , Empalme del ARN , Niño , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Masculino , Linaje , Secuenciación Completa del Genoma
5.
Hum Mutat ; 40(12): 2286-2295, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31397523

RESUMEN

Nonsyndromic hearing loss (NSHL), a common sensory disorder, is characterized by high clinical and genetic heterogeneity (i.e., approximately 115 genes and 170 loci so far identified). Nevertheless, almost half of patients submitted for genetic testing fail to receive a conclusive molecular diagnosis. We used next-generation sequencing to identify causal variants in PLS1 (c.805G>A, p.[E269K]; c.713G>T, p.[L238R], and c.383T>C, p.[F128S]) in three unrelated families of European ancestry with autosomal dominant NSHL. PLS1 encodes Plastin 1 (also called fimbrin), one of the most abundant actin-bundling proteins of the stereocilia. In silico protein modeling suggests that all variants destabilize the structure of the actin-binding domain 1, likely reducing the protein's ability to bind F actin. The role of PLS1 gene in hearing function is further supported by the recent demonstration that Pls1-/- mice show a hearing loss phenotype similar to that of our patients. In summary, we report PLS1 as a novel gene for autosomal dominant NSHL, suggesting that this gene is required for normal hearing in humans and mice.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Mutación Puntual , Simulación por Computador , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Moleculares , Linaje , Unión Proteica , Análisis de Secuencia de ADN , Población Blanca/genética
6.
Eur J Hum Genet ; 27(10): 1569-1577, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31278392

RESUMEN

Proteoglycans have a core polypeptide connected to glycosaminoglycans (GAGs) via a common tetrasaccharide linker region. Defects in enzymes that synthesize the linker result in a group of autosomal recessive conditions called "linkeropathies". Disease manifests with skeletal and connective tissue features, including short stature, hyperextensible skin, and joint hypermobility. We report a family with three affected pregnancies showing short limbs, cystic hygroma, and perinatal death. Two spontaneously aborted; one survived 1 day after term delivery, and had short limbs, bell-shaped thorax, 11 ribs, absent thumbs, and cleft palate. Exome sequencing of the proband and one affected fetus identified compound heterozygous missense variants, NM_007255.3: c.808C>T (p.(Arg270Cys)) and NM_007255.3: c.398A>G (p.(Gln133Arg)), in B4GALT7, a gene required for GAG linker biosynthesis. Homozygosity for p.(Arg270Cys), associated with partial loss of B4GALT7 function, causes Larsen of Reunion Island syndrome (LRS), however no previous studies have linked p.(Gln133Arg) to disease. The p.(Gln133Arg) and p.(Arg270Cys) variants were transfected into CHO pgsB-618 cells. High protein expression of p.(Gln133Arg) was found, with mislocalization, compared to p.(Arg270Cys) that had a normal Golgi-like pattern. The p.(Gln133Arg) had almost no enzyme activity and little production of heparan sulfate GAGs, while p.(Arg270Cys) only had 17% of wild-type activity. These findings expand the phenotype of B4GALT7-related linkeropathies to include lethal skeletal dysplasia due to more severe loss of function.


Asunto(s)
Galactosiltransferasas/genética , Anomalías Musculoesqueléticas/diagnóstico , Anomalías Musculoesqueléticas/genética , Mutación , Fenotipo , Aborto Espontáneo , Línea Celular , Enfermedades del Tejido Conjuntivo/diagnóstico , Enfermedades del Tejido Conjuntivo/genética , Activación Enzimática , Femenino , Galactosiltransferasas/metabolismo , Estudios de Asociación Genética , Humanos , Mutagénesis Sitio-Dirigida , Embarazo , Radiografía , Síndrome , Secuenciación del Exoma
7.
Mol Psychiatry ; 24(11): 1748-1768, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29728705

RESUMEN

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Niño , Preescolar , Trastorno de la Conducta/genética , Femenino , Genes Ligados a X , Células HEK293 , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Persona de Mediana Edad , Mutación , Linaje , Factores de Transcripción/genética , Ubiquitinación , Inactivación del Cromosoma X , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Hum Mutat ; 39(8): 1126-1138, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29851191

RESUMEN

Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and three maternally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins. We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such as mRNA export, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in humans.


Asunto(s)
Epilepsia/metabolismo , Exones/genética , Trastornos del Crecimiento/metabolismo , Discapacidad Intelectual/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Niño , Preescolar , Epilepsia/genética , Femenino , Trastornos del Crecimiento/genética , Células HEK293 , Células HeLa , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación Missense/genética , Isoformas de Proteínas/genética , Transporte de ARN/genética , Transporte de ARN/fisiología , Proteínas de Unión al ARN/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-29305346

RESUMEN

Two sisters (ages 16 yr and 15 yr) have been followed by our clinical genetics team for several years. Both girls have severe intellectual disability, hypotonia, seizures, and distinctive craniofacial features. The parents are healthy and have no other children. Oligo array, fragile X testing, and numerous single-gene tests were negative. All four family members underwent research exome sequencing, which revealed a heterozygous nonsense mutation in ASXL3 (p.R1036X) that segregated with disease. Exome data and independent Sanger sequencing confirmed that the variant is de novo, suggesting possible germline mosaicism in one parent. The p.R1036X variant has never been observed in healthy human populations and has been previously reported as a pathogenic mutation. Truncating de novo mutations in ASXL3 cause Bainbridge-Ropers syndrome (BRPS), a developmental disorder with similarities to Bohring-Opitz syndrome. Fewer than 30 BRPS patients have been described in the literature; to our knowledge, this is the first report of the disorder in two related individuals. Our findings lend further support to intellectual disability, absent speech, autistic traits, hypotonia, and distinctive facial appearance as common emerging features of Bainbridge-Ropers syndrome.


Asunto(s)
Codón sin Sentido , Estudios de Asociación Genética , Fenotipo , Hermanos , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adolescente , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Síndrome , Secuenciación del Exoma
10.
Cytogenet Genome Res ; 152(2): 105-109, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28746920

RESUMEN

Maternal uniparental disomy (UPD) 15 is one of the molecular causes of Prader-Willi syndrome (PWS), a multisystem disorder which presents with neonatal hypotonia and feeding difficulty. Current diagnostic algorithms differ regarding the use of SNP microarray to detect PWS. We retrospectively examined the frequency with which SNP microarray could identify regions of homozygosity (ROH) in patients with PWS. We determined that 7/12 (58%) patients with previously confirmed PWS by methylation analysis and microsatellite-positive UPD studies had ROH (>10 Mb) by SNP microarray. Additional assessment of 5,000 clinical microarrays, performed from 2013 to present, determined that only a single case of ROH for chromosome 15 was not caused by an imprinting disorder or identity by descent. We observed that ROH for chromosome 15 is rarely incidental and strongly associated with hypotonic infants having features of PWS. Although UPD microsatellite studies remain essential to definitively establish the presence of UPD, SNP microarray has important utility in the timely diagnostic algorithm for PWS.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Disomía Uniparental/diagnóstico , Cromosomas Humanos Par 15/genética , Metilación de ADN/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...