Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Extracell Vesicles ; 13(4): e12421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545822

RESUMEN

Extracellular vesicles (EVs) contain a plethora of biomolecules, including nucleic acids, with diverse diagnostic and therapeutic application potential. Although reverse transcription-quantitative PCR (RT-qPCR) is the most widely applied laboratory technique to evaluate gene expression, its applicability in EV research is challenged by the lack of universal and stably present reference genes (RGs). In this study, we identify, validate and establish SNRPG, OST4, TOMM7 and NOP10 as RGs for the normalization of EV-associated genes by RT-qPCR. We show the stable presence of SNRPG, OST4, TOMM7 and NOP10 in multiple cell lines and their secreted EVs (n = 12) under different (patho)physiological conditions as well as in human-derived biofluids (n = 3). Enzymatic treatments confirm the presence of SNRPG, OST4, TOMM7 and NOP10 inside EVs. In addition, the four EV-associated RGs are stably detected in a size-range of EV subpopulations. RefFinder analysis reveals that SNRPG, OST4, TOMM7 and NOP10 are more stable compared to RGs established specifically for cultured cells or tissues such as HMBS, YWHAZ, SDHA and GAPDH. In summary, we present four universal and stably present EV-associated RGs to enable normalization and thus steer the implementation of RT-qPCR for the analysis of EV-associated RNA cargo for research or clinical applications.


Asunto(s)
Vesículas Extracelulares , Transcripción Reversa , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , ARN/metabolismo , Línea Celular , Células Cultivadas , Proteínas Nucleares snRNP/metabolismo
2.
Nanotheranostics ; 8(1): 48-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164498

RESUMEN

Sweat contains biomarkers for real-time non-invasive health monitoring, but only a few relevant analytes are currently used in clinical practice. In the present study, we investigated whether sweat-derived extracellular vesicles (EVs) can be used as a source of potential protein biomarkers of human and bacterial origin. Methods: By using ExoView platform, electron microscopy, nanoparticle tracking analysis and Western blotting we characterized EVs in the sweat of eight volunteers performing rigorous exercise. We compared the presence of EV markers as well as general protein composition of total sweat, EV-enriched sweat and sweat samples collected in alginate skin patches. Results: We identified 1209 unique human proteins in EV-enriched sweat, of which approximately 20% were present in every individual sample investigated. Sweat derived EVs shared 846 human proteins (70%) with total sweat, while 368 proteins (30%) were captured by medical grade alginate skin patch and such EVs contained the typical exosome marker CD63. The majority of identified proteins are known to be carried by EVs found in other biofluids, mostly urine. Besides human proteins, EV-enriched sweat samples contained 1594 proteins of bacterial origin. Bacterial protein profiles in EV-enriched sweat were characterized by high interindividual variability, that reflected differences in total sweat composition. Alginate-based sweat patch accumulated only 5% proteins of bacterial origin. Conclusion: We showed that sweat-derived EVs provide a rich source of potential biomarkers of human and bacterial origin. Use of commercially available alginate skin patches selectively enrich for human derived material with very little microbial material collected.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Sudor/metabolismo , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Biomarcadores/metabolismo , Alginatos/metabolismo
3.
Matrix Biol ; 125: 73-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081527

RESUMEN

Collagen biosynthesis requires several co- and post-translational modifications of lysine and proline residues to form structurally and functionally competent collagen molecules. Formation of 4-hydroxyproline (4Hyp) in Y-position prolines of the repetitive -X-Y-Gly- sequences provides thermal stability for the triple-helical collagen molecules. 4Hyp formation is catalyzed by a collagen prolyl 4-hydroxylase (C-P4H) family consisting of three isoenzymes. Here we identify specific roles for the two main C-P4H isoenzymes in collagen hydroxylation by a detailed 4Hyp analysis of type I and IV collagens derived from cell and tissue samples. Loss of C-P4H-I results in underhydroxylation of collagen where the affected prolines are not uniformly distributed, but mainly present in sites where the adjacent X-position amino acid has a positively charged or a polar uncharged side chain. In contrast, loss of C-P4H-II results in underhydroxylation of triplets where the X-position is occupied by a negatively charged amino acid glutamate or aspartate. Hydroxylation of these triplets was found to be important as loss of C-P4H-II alone resulted in reduced collagen melting temperature and altered assembly of collagen fibrils and basement membrane. The observed C-P4H isoenzyme differences in substrate specificity were explained by selective binding of the substrate to the active site resulting in distinct differences in Km and Vmax values. Furthermore, our results clearly show that the substrate proline selection is not dependent on the collagen type, but the main determinant is the X-position amino acid of the -X-Pro-Gly- triplet. Although our data clearly shows the necessity of both C-P4H-I and II for normal prolyl 4-hydroxylation and function of collagens, the mRNA expression of the isoenzymes with various procollagens was, surprisingly, not tightly coordinated, suggesting additional levels of control. In conclusion, this study provides a molecular level explanation for the need of multiple C-P4H isoenzymes to generate collagen molecules capable to assemble into intact extracellular matrix structures.


Asunto(s)
Dipéptidos , Isoenzimas , Prolil Hidroxilasas , Prolil Hidroxilasas/genética , Isoenzimas/genética , Colágeno Tipo I/genética , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/metabolismo , Colágeno/genética , Colágeno/metabolismo , Prolina/metabolismo
4.
J Extracell Vesicles ; 12(8): e12339, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548263

RESUMEN

Despite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size-exclusion chromatography (DG-SEC), differential ultracentrifugation (dUC) and/or stand-alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer-associated fibroblasts (CAF). EV-enriched but protein-depleted versus EV-depleted but protein-enriched DG-SEC fractions, and EV-containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose-dependently evaluated for monocyte-derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG-SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF-A and MCP-1 and potently stimulated MoDC maturation. In contrast, EV-containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose-dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method-dependent off-target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Ultracentrifugación
5.
Clin Genet ; 104(6): 686-693, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574199

RESUMEN

We studied a patient with mitochondrial DNA depletion in skeletal muscle and a multiorgan phenotype, including fatal encephalomyopathy, retinopathy, optic atrophy, and sensorineural hearing loss. Instead of pathogenic variants in the mitochondrial maintenance genes, we identified previously unpublished variant in DHX16 gene, a de novo heterozygous c.1360C>T (p. Arg454Trp). Variants in DHX16 encoding for DEAH-box RNA helicase have previously been reported only in five patients with a phenotype called as neuromuscular oculoauditory syndrome including developmental delay, neuromuscular symptoms, and ocular or auditory defects with or without seizures. We performed functional studies on patient-derived fibroblasts and skeletal muscle revealing, that the DHX16 expression was decreased. Clinical features together with functional data suggest, that our patient's disease is associated with a novel pathogenic DHX16 variant, and mtDNA depletion could be a secondary manifestation of the disease.


Asunto(s)
Errores Innatos del Metabolismo , Atrofia Óptica , Enfermedades de la Retina , Humanos , ADN Mitocondrial/genética , Músculo Esquelético/patología , Atrofia Óptica/patología , ARN Helicasas , Lactante
6.
J Extracell Vesicles ; 12(5): e12315, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37202906

RESUMEN

The analysis of extracellular vesicles (EV) in blood samples is under intense investigation and holds the potential to deliver clinically meaningful biomarkers for health and disease. Technical variation must be minimized to confidently assess EV-associated biomarkers, but the impact of pre-analytics on EV characteristics in blood samples remains minimally explored. We present the results from the first large-scale EV Blood Benchmarking (EVBB) study in which we systematically compared 11 blood collection tubes (BCT; six preservation and five non-preservation) and three blood processing intervals (BPI; 1, 8 and 72 h) on defined performance metrics (n = 9). The EVBB study identifies a significant impact of multiple BCT and BPI on a diverse set of metrics reflecting blood sample quality, ex-vivo generation of blood-cell derived EV, EV recovery and EV-associated molecular signatures. The results assist the informed selection of the optimal BCT and BPI for EV analysis. The proposed metrics serve as a framework to guide future research on pre-analytics and further support methodological standardization of EV studies.


Asunto(s)
Vesículas Extracelulares , Benchmarking , Biomarcadores
7.
Methods Mol Biol ; 2668: 241-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37140801

RESUMEN

Integrating the versatility of synthetic nanoparticles to natural biomaterials, such as cells or cell membranes, has gained considerable attention as promising alternative cargo delivery platforms in recent years. Extracellular vesicles (EVs), natural nanomaterials composed of a protein-rich lipid bilayer secreted by cells, have also shown advantages and great potential as a nano delivery platform in combination with synthetic particles due to their specific natural properties in overcoming several biology hurdles possessed in the recipient cell. Therefore, the preservation of EV's origin properties is critical for their application as nanocarriers. This chapter will describe the encapsulation procedure of MSN encapsulated in EV membrane derived from mouse renal adenocarcinoma (Renca) cells through biogenesis. The FMSN-enclosed EVs produced through this approach still contain preserved EV's natural membrane properties.


Asunto(s)
Carcinoma de Células Renales , Vesículas Extracelulares , Neoplasias Renales , Nanopartículas , Animales , Ratones , Carcinoma de Células Renales/metabolismo , Dióxido de Silicio/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Renales/metabolismo
8.
J Nanobiotechnology ; 21(1): 157, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208684

RESUMEN

BACKGROUND: Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. RESULTS: Automated versus manual density-based separation of trackable recombinant extracellular vesicles (rEV) spiked in PBS significantly reduces variability in rEV recovery as quantified by fluorescent nanoparticle tracking analysis and ELISA. To validate automated density-based EV separation from complex body fluids, including blood plasma and urine, we assess reproducibility, recovery, and specificity by mass spectrometry-based proteomics and transmission electron microscopy. Method reproducibility is the highest in the automated procedure independent of the matrix used. While retaining (in urine) or enhancing (in plasma) EV recovery compared to manual liquid handling, automation significantly reduces the presence of body fluid specific abundant proteins in EV preparations, including apolipoproteins in plasma and Tamm-Horsfall protein in urine. CONCLUSIONS: In conclusion, automated liquid handling ensures cost-effective EV separation from human body fluids with high reproducibility, specificity, and reduced hands-on time with the potential to enable larger-scale biomarker studies.


Asunto(s)
Vesículas Extracelulares , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo , Vesículas Extracelulares/metabolismo , Proteínas , Biomarcadores/metabolismo
9.
Invest Ophthalmol Vis Sci ; 63(11): 1, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190459

RESUMEN

Purpose: Defects in the iridocorneal angle tissues, including the trabecular meshwork (TM) and Schlemm's canal (SC), impair aqueous humor flow and increase the intraocular pressure (IOP), eventually resulting in glaucoma. Activation of endothelial tyrosine kinase receptor Tie2 by angiopoietin-1 (Angpt1) has been demonstrated to be essential for SC formation, but roles of the other two Tie2 ligands, Angpt2 and Angpt4, have been controversial or not yet characterized, respectively. Methods: Angpt4 expression was investigated using genetic cell fate mapping and reporter mice. Congenital deletion of Angpt2 and Angpt4 and tamoxifen-inducible deletion of Angpt1 in mice were used to study the effects of Angpt4 deletion alone and in combination with the other angiopoietins. SC morphology was examined with immunofluorescent staining. IOP measurements, electron microscopy, and histologic evaluation were used to study glaucomatous changes. Results: Angpt4 was postnatally expressed in the TM. While Angpt4 deletion alone did not affect SC and Angpt4 deletion did not aggravate Angpt1 deletion phenotype, absence of Angpt4 combined with Angpt2 deletion had detrimental effects on SC morphology in adult mice. Consequently, Angpt2-/-;Angpt4-/- mice displayed glaucomatous changes in the eye. Mice with Angpt2 deletion alone showed only moderate SC defects, but Angpt2 was necessary for proper limbal vasculature development. Mechanistically, analysis of Tie2 phosphorylation suggested that Angpt2 and Angpt4 cooperate as agonistic Tie2 ligands in maintaining SC integrity. Conclusions: Our results indicated an additive effect of Angpt4 in SC maintenance and Tie2 activation and a spatiotemporally regulated interplay between the angiopoietins in the mouse iridocorneal angle.


Asunto(s)
Angiopoyetina 2 , Angiopoyetinas , Glaucoma , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Angiopoyetinas/genética , Animales , Humor Acuoso/metabolismo , Glaucoma/patología , Presión Intraocular , Ratones , Tamoxifeno , Malla Trabecular/metabolismo
10.
Sci Rep ; 12(1): 13459, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931748

RESUMEN

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) are widely used in in vitro biomedical research and testing. However, fully matured, adult cardiomyocyte characteristics have not been achieved. To improve the maturity and physiological relevance of hiPSC-derived cardiomyocytes, we co-cultured them with preconstructed vascular-like networks to form a functional, human cell-based cardiac tissue model. The morphology and gene expression profiles indicated advanced maturation in the cardiac tissue model compared to those of a cardiomyocyte monoculture. The cardiac tissue model's functionality was confirmed by measuring the effects of 32 compounds with multielectrode array and comparing results to human data. Our model predicted the cardiac effects with a predictive accuracy of 91%, sensitivity of 90% and specificity of 100%. The correlation between the effective concentration (EC50) and the reported clinical plasma concentrations was 0.952 (R2 = 0.905). The developed advanced human cell-based cardiac tissue model showed characteristics and functionality of human cardiac tissue enabling accurate transferability of gained in vitro data to human settings. The model is standardized and thus, it would be highly useful in biomedical research and cardiotoxicity testing.


Asunto(s)
Investigación Biomédica , Células Madre Pluripotentes Inducidas , Cardiotoxicidad/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Miocitos Cardíacos/metabolismo
11.
J Biol Chem ; 298(4): 101787, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247391

RESUMEN

Hypoxia-inducible factors (HIFs) induce numerous genes regulating oxygen homeostasis. As oxygen sensors of the cells, the HIF prolyl 4-hydroxylases (HIF-P4Hs) regulate the stability of HIFs in an oxygen-dependent manner. During hair follicle (HF) morphogenesis and cycling, the location of dermal papilla (DP) alternates between the dermis and hypodermis and results in varying oxygen levels for the DP cells. These cells are known to express hypoxia-inducible genes, but the role of the hypoxia response pathway in HF development and homeostasis has not been studied. Using conditional gene targeting and analysis of hair morphogenesis, we show here that lack of Hif-p4h-2 in Forkhead box D1 (FoxD1)-lineage mesodermal cells interferes with the normal HF development in mice. FoxD1-lineage cells were found to be mainly mesenchymal cells located in the dermis of truncal skin, including those cells composing the DP of HFs. We found that upon Hif-p4h-2 inactivation, HF development was disturbed during the first catagen leading to formation of epithelial-lined HF cysts filled by unorganized keratins, which eventually manifested as truncal alopecia. Furthermore, the depletion of Hif-p4h-2 led to HIF stabilization and dysregulation of multiple genes involved in keratin formation, HF differentiation, and HIF, transforming growth factor ß (TGF-ß), and Notch signaling. We hypothesize that the failure of HF cycling is likely to be mechanistically caused by disruption of the interplay of the HIF, TGF-ß, and Notch pathways. In summary, we show here for the first time that HIF-P4H-2 function in FoxD1-lineage cells is essential for the normal development and homeostasis of HFs.


Asunto(s)
Alopecia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Alopecia/enzimología , Alopecia/genética , Animales , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratones , Oxígeno/metabolismo , Factor de Crecimiento Transformador beta
12.
Genesis ; 60(3): e23470, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35258166

RESUMEN

The loss of NHL repeat containing 2 (Nhlrc2) leads to early embryonic lethality in mice, but the exact timing is currently unknown. In this study, we determined the time of lethality for Nhlrc2 knockout (KO), C57BL/6NCrl-Nhlrc2tm1a(KOMP)Wtsi /Oulu, embryos and the in situ expression pattern of Nhlrc2 based on LacZ reporter gene expression during this period. Nhlrc2 KO preimplantation mouse embryos developed normally after in vitro fertilization. Embryonic stem (ES) cells established from KO blastocysts proliferated normally despite a complete loss of the NHLRC2 protein. Nhlrc2 KO embryos from timed matings implanted and were indistinguishable from their wildtype littermates on embryonic day (E) 6.5. On E7.5, Nhlrc2 KO embryo development was arrested, and on E8.5, only 6% of the genotyped embryos were homozygous for the Nhlrc2tm1a(KOMP)Wtsi allele. Nhlrc2 KO E8.5 embryos showed limited embryonic or extraembryonic tissue differentiation and remained at the cylinder stage. Nhlrc2 expression was ubiquitous but strongest in the epiblast/ectoderm and extraembryonic ectoderm on E6.5 and E7.5. NHLRC2 is essential for early postimplantation development, and its loss leads to failed gastrulation and amniotic folding in mice. Future studies on the evolutionarily conserved NHLRC2 will provide new insights into the molecular pathways involved in the early steps of postimplantation development.


Asunto(s)
Gastrulación , Estratos Germinativos , Animales , Diferenciación Celular/genética , Ectodermo , Gastrulación/genética , Ratones , Ratones Endogámicos C57BL
13.
Vis Neurosci ; 38: E015, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34635193

RESUMEN

Studies of functional variability in the compound eyes of flies reveal superior temporal resolution of photoreceptors from the frontal areas that mediate binocular vision, and in males mate recognition and pursuit. However, the mechanisms underlying differences in performance are not known. Here, we investigated properties of hover fly Volucella pellucens photoreceptors from two regions of the retina, the frontal-dorsal "love spot" and the lateral one. Morphologically, the microvilli of the frontal-dorsal photoreceptors were relatively few in number per rhabdomere cross-section, short and narrow. In electrophysiological experiments involving stimulation with prolonged white-noise and natural time intensity series, frontal-dorsal photoreceptors demonstrated comparatively high corner frequencies and information rates. Investigation of possible mechanisms responsible for their superior performance revealed significant differences in the properties of quantum bumps, and, unexpectedly, relatively high absolute sensitivity of the frontal-dorsal photoreceptors. Analysis of light adaptation indicated that photoreceptors from two regions adapt similarly but because frontal-dorsal photoreceptors were depolarized much stronger by the same stimuli than the lateral photoreceptors, they reached a deeper state of adaptation associated with higher corner frequencies of light response. Recordings from the photoreceptor axons were characterized by spike-like events that can significantly expand the frequency response range. Seamless integration of spikes into the graded voltage responses was enabled by light adaptation mechanisms that accelerate kinetics and decrease duration of depolarizing light response transients.


Asunto(s)
Dípteros , Células Fotorreceptoras de Invertebrados , Animales , Fenómenos Electrofisiológicos , Masculino , Microvellosidades
14.
Microbiologyopen ; 10(5): e1238, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713605

RESUMEN

Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN de Hongos , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576139

RESUMEN

Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis using the transgenic MMTV-PyMT mouse mammary carcinoma model. We show here for the first time that the inactivation of Col15a1 in mice leads to changes in the fibrillar tumour matrix and to increased mammary tumour growth. ColXV is expressed by myoepithelial and endothelial cells in mammary tumours and is lost from the ductal BM along with the loss of the myoepithelial layer during cancer progression while persisting in blood vessels and capillaries, even in invasive tumours. However, despite the absence of anti-angiogenic restin domain, neovascularisation was reduced rather than increased in the ColXV-deficient mammary tumours compared to controls. We also show that, in robust tumour cell transplantation models or in a chemical-induced fibrosarcoma model, the inactivation of Col15a1 does not affect tumour growth or angiogenesis. In conclusion, our results support the proposed tumour suppressor function of ColXV in mammary carcinogenesis and reveal diverse roles of this collagen in different cancer types.


Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Colágeno/deficiencia , Matriz Extracelular/metabolismo , Eliminación de Gen , Neoplasias Mamarias Animales/patología , Virus del Tumor Mamario del Ratón/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/patología , Proliferación Celular , Colágeno/genética , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosarcoma/patología , Fibrosis , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/ultraestructura , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células del Estroma/patología , Células del Estroma/ultraestructura , Análisis de Supervivencia
16.
J Extracell Vesicles ; 10(10): e12122, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34429857

RESUMEN

Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biological understanding and biomarker development. In this study, we fractionate blood plasma by combining size-exclusion chromatography (SEC) and OptiPrep density gradient centrifugation to study clinical context-dependent and time-dependent variations in the biomolecular landscape of systemically circulating EV. Using pooled blood plasma samples from breast cancer patients, we first demonstrate the technical repeatability of blood plasma fractionation. Using serial blood plasma samples from HIV and ovarian cancer patients (n = 10) we next show that EV carry a clinical context-dependent and/or time-dependent protein and small RNA composition, including miRNA and tRNA. In addition, differential analysis of blood plasma fractions provides a catalogue of putative proteins not associated with systemically circulating EV. In conclusion, the implementation of blood plasma fractionation allows to advance the biological understanding and biomarker development of systemically circulating EV.


Asunto(s)
Centrifugación por Gradiente de Densidad/métodos , Fraccionamiento Químico/métodos , Vesículas Extracelulares/química , Lipoproteínas/análisis , Plasma/química , Proteoma , Biomarcadores/análisis , Neoplasias de la Mama/sangre , Neoplasias de la Mama/química , Cromatografía en Gel , Femenino , Infecciones por VIH/sangre , Humanos , Neoplasias Ováricas/sangre , Neoplasias Ováricas/química
17.
BMC Genomics ; 22(1): 425, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34103018

RESUMEN

BACKGROUND: The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. RESULTS: We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7-45%), with 50-60% of those reads mapping to unannotated region of the genome and 30-55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA. CONCLUSIONS: Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Ácidos Nucleicos , Genoma Humano , Humanos , Sudor
18.
Oxid Med Cell Longev ; 2021: 8026941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33603952

RESUMEN

DLBCL is the most common type of non-Hodgkin lymphoma with a substantial group of patients suffering a poor prognosis. Therefore more specific markers are required for better understanding of disease biology and treatment. This study demonstrates that testis-specific antioxidant enzymes TXNDC2, TXNDC3, and TXNDC6 alongside oxidative stress marker 8-OHdG are expressed in both testicular and systemic DLBCL, and their presence or absence has correlations with clinical risk factors such as the number of extranodal effusion, the appearance of B-symptoms, and treatment response. Biopsy samples were collected from 28 systemic and 21 testicular male DLBCL patients. The samples were histostained with TXNDC2, TXNDC3, TXNDC6, and 8-OHdG, then graded by a hematopathologist blinded to clinical data. Immunoelectron microscopy was used as a second method to confirm the reliability of the acquired immunohistochemistry data. The absence of nuclear TXNDC2 expression in testicular DLBCL cells correlated with worse primary treatment response, cytoplasmic TXNDC3 expression in testicular and systemic DLBCL associated with lower frequency of B-symptoms, and TXNDC6 expression in cytoplasm in systemic DLBCL had a clinical significance with higher LD levels suggesting a role in the biological nature of these lymphomas. Overall, TXNDC3 cytoplasmic expression is correlated with a more positive outcome in both testicular and systemic DLBCL, while TXNDC6 cytoplasmic expression is associated with a negative outcome in systemic DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Proteínas de la Membrana/metabolismo , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología , Testículo/metabolismo , Tiorredoxinas/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/ultraestructura , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Neoplasias Testiculares/ultraestructura , Testículo/patología , Testículo/ultraestructura
19.
Cancer Res ; 81(1): 129-143, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037065

RESUMEN

Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443), a genetic model for breast cancer and metastasis (MMTV-PyMT), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro, ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5ß1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer.See related commentary by Kamiyama and Augustin, p. 35.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Angiopoyetina 1 , Angiopoyetina 2/genética , Angiopoyetinas , Animales , Neoplasias Pulmonares/genética , Ratones , Neovascularización Patológica/genética , Remodelación Vascular
20.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33298456

RESUMEN

Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm-/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm-/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm-/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm-/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.


Asunto(s)
Astrocitos , Señalización del Calcio , Astrocitos/metabolismo , Humanos , Hipoxia , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...