Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Pediatr Res ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267709

RESUMEN

BACKGROUND: We previously reported that hydrogen (H2) gas combined with therapeutic hypothermia (TH) improved short-term neurological outcomes in asphyxiated piglets. However, the effect on seizure burden was unclear. Using amplitude-integrated electroencephalography (aEEG), we compared TH + H2 with TH alone in piglets 24 h after hypoxic-ischemic (HI) insult. METHODS: After a 40-min insult and resuscitation, 36 piglets ≤24 h old were divided into three groups: normothermia (NT, n = 14), TH alone (33.5 ± 0.5 °C, 24 h, n = 13), and TH + H2 (2.1-2.7% H2 gas, 24 h, n = 9). aEEG was recorded for 24 h post-insult and its background pattern, status epilepticus (SE; recurrent seizures lasting >5 min), and seizure occurrence (Sz; occurring at least once but not fitting the definition of SE) were evaluated. Background findings with a continuous low voltage and burst suppression were considered abnormal. RESULTS: The percentage of piglets with an abnormal aEEG background (aEEG-BG), abnormal aEEG-BG+Sz and SE was lower with TH + H2 than with TH at 24 h after HI insult. The duration of SE was shorter with TH + H2 and significantly shorter than with NT. CONCLUSIONS: H2 gas combined with TH ameliorated seizure burden 24 h after HI insult. IMPACT: In this asphyxiated piglet model, there was a high percentage of animals with an abnormal amplitude-integrated electroencephalography background (aEEG-BG) after hypoxic-ischemic (HI) insult, which may correspond to moderate and severe hypoxic-ischemic encephalopathy (HIE). Therapeutic hypothermia (TH) was associated with a low percentage of piglets with EEG abnormalities up to 6 h after HI insult but this percentage increased greatly after 12 h, and TH was not effective in attenuating seizure development. H2 gas combined with TH was associated with a low percentage of piglets with an abnormal aEEG-BG and with a shorter duration of status epilepticus at 24 h after HI insult.

2.
J Vet Med Sci ; 86(3): 300-307, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38267037

RESUMEN

We previously showed that the anti-Müllerian hormone (AMH), infiltrating from the testis to the mesonephros reaches the cranial and middle regions of the Müllerian duct (MD) and induces their regression using an organ culture in mice. However, it is difficult to maintain structural integrity, such as the length and diameter and normal direction of elongation of the caudal region of the MD, in conventional organ culture systems. Therefore, the pathway of AMH to the caudal MD region remains uncharted. In this study, we established an organ culture method that can maintain the morphology of the caudal region of the MD. The gonad-mesonephros complex, metanephros, and urinary bladder of mouse fetuses at 12.5 dpc attached to the body trunk were cultured on agarose gels for 72 hr. The cultured caudal region of the mesonephros was elongated along the body trunk, and the course of the mesonephros was maintained in many individuals. In males, mesenchymal cells aggregated around the MD after culture. Moreover, the male MD diameter was significantly smaller than the female. Based on these results, it was concluded that the development of the MD was maintained in the present organ culture system. Using this culture system, AMH infiltration to the caudal region of the MD can be examined without the influence of AMH in the blood. This culture system is useful for clarifying the regression mechanism of the caudal region of the MD.


Asunto(s)
Hormona Antimülleriana , Estructuras Embrionarias , Riñón/embriología , Conductos Paramesonéfricos , Ratones , Masculino , Femenino , Animales , Técnicas de Cultivo de Órganos/veterinaria , Hormona Antimülleriana/metabolismo , Testículo/metabolismo
3.
Dev Dyn ; 253(3): 296-311, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37787412

RESUMEN

BACKGROUND: The Müllerian duct (MD), the primordium of the female reproductive tract, is also formed in males during the early stage of development, then regresses due to the anti-Müllerian hormone (AMH) secreted from the testes. However, the detailed diffusion pathway of AMH remains unclear. We herein investigated the mechanism by which AMH reaches the middle region of the MD using an organ culture system. RESULTS: Injection of recombinant human AMH into the testis around the start of MD regression induced diffuse immunoreactivity in the mesonephros near the injection site. When the testis and mesonephros were cultured separately, the diameters of both cranial and middle MDs were significantly increased compared to the control. In the testis-mesonephros complex cultured by inhibiting the diffusion of AMH through the cranial region, the cranial MD diameter was significantly increased compared to the control, and there was no difference in middle MD diameter. CONCLUSIONS: These results indicate that AMH, which infiltrates from the testis through the cranial region at physiological concentrations, induces regression of the cranial MD at the start of MD regression. They also indicate that AMH infiltrating through the caudal regions induces regression of the middle MD.


Asunto(s)
Hormona Antimülleriana , Testículo , Humanos , Masculino , Femenino , Animales , Ratones , Gónadas , Desarrollo Embrionario , Técnicas de Cultivo de Órganos , Factor de Crecimiento Transformador beta
4.
J Neurochem ; 167(6): 778-794, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037675

RESUMEN

Epidemiological studies have indicated that child maltreatment, such as neglect, is a risk factor of escalated aggression, potentially leading to delinquency and violent crime in the future. However, little is known about the mechanisms by which an early adverse environment may later cause violent behavior. In this study, we aimed to thoroughly examine the association between aggression against conspecific animals and the activity of amygdala subnuclei using the maternal separation (MS) model, which is a common model of early life stress. In the MS group, pups of Sprague-Dawley rats were separated from their dam during postnatal days 2-20 (twice a day, 3 h each). We only included 9-week-old male offspring for each analysis and compared the MS group with the mother-reared control group; both groups were raised by the same dam during postnatal days 2-20. The results revealed that the MS group exhibited higher aggression and excessive activity of only the central amygdala (CeA) among the amygdala subnuclei during the aggressive behavior test. Moreover, a significant positive correlation was observed between higher aggression and CeA activation. While CeA activity is known to be involved in hunting behavior for prey, some previous studies have also indicated a relationship between CeA and intraspecific aggression. It remains unclear, however, whether excessive CeA activity directly induces intraspecific aggression. Therefore, we stimulated the CeA using optogenetics with 8-week-old rats to clarify the relationship between intraspecific aggression and CeA activity. Notably, CeA activation resulted in higher aggression, even when the opponent was a conspecific animal. In particular, bilateral CeA activation resulted in more severe displays of aggressive behavior than necessary, such as biting a surrendered opponent. These findings suggest that an adverse environment during early development intensifies aggression through excessive CeA activation, which can increase the risk of escalating to violent behavior in the future.


Asunto(s)
Agresión , Núcleo Amigdalino Central , Animales , Humanos , Masculino , Ratas , Agresión/fisiología , Privación Materna , Ratas Sprague-Dawley
5.
Sci Rep ; 13(1): 10486, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380745

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of morbidity and mortality in newborns in both high- and low-income countries. The important determinants of its pathophysiology are neural cells and vascular components. In neonatal HIE, increased vascular permeability due to damage to the blood-brain barrier is associated with seizures and poor outcomes in both translational and clinical studies. In our previous studies, hydrogen gas (H2) improved the neurological outcome of HIE and ameliorated the cell death. In this study, we used albumin immunohistochemistry to assess if H2 inhalation effectively reduced the cerebral vascular leakage. Of 33 piglets subjected to a hypoxic-ischemic insult, 26 piglets were ultimately analyzed. After the insult, the piglets were grouped into normothermia (NT), H2 ventilation (H2), therapeutic hypothermia (TH), and H2 combined with TH (H2-TH) groups. The ratio of albumin stained to unstained areas was analyzed and found to be lower in the H2 group than in the other groups, although the difference was not statistically significant. In this study, H2 therapy did not significantly improve albumin leakage despite the histological images suggesting signs of improvement. Further investigations are warranted to study the efficacy of H2 gas for vascular leakage in neonatal HIE.


Asunto(s)
Hipoxia-Isquemia Encefálica , Hipoxia , Animales , Porcinos , Hipoxia-Isquemia Encefálica/terapia , Albúminas , Barrera Hematoencefálica , Hidrógeno/farmacología , Hidrógeno/uso terapéutico
6.
Pediatr Res ; 94(5): 1650-1658, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37225778

RESUMEN

BACKGROUND: Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS: Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS: Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION: One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT: How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Humanos , Ratas , Masculino , Animales , Torsión del Cordón Espermático/genética , Ratas Sprague-Dawley , Semen/metabolismo , Espermatogénesis , Testículo/patología , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Isquemia/genética , Isquemia/patología
7.
J Vet Med Sci ; 85(4): 507-514, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36858585

RESUMEN

The expression of sex determining region of the Y chromosome (Sry) in the fetal gonads is important for male development. In a mouse model of disorders of sex development (C57BL/6 (B6)-XYPOS), the gonadal phenotype and the timing of Sry expression differ due to differences among B6 substrains as the genetic background. Since differences in Sry expression among B6 substrains have been speculated, the present study examined Sry expression in B6J, B6JJmsSlc, and B6NCrl mice. These substrains differed in the number of Sry-expressing cells in the gonads of embryonic mice at each developmental stage, with B6NCrl having more than the other strains. The substrains differed also in the number of Sry-expressing cells between the left and right gonads, with B6J and B6NCrl, but not B6JJmsSlc, showing left gonad-dominant Sry expression. Substrain differences existed also in the distribution of Sry-expressing cells in the medial and lateral directions of gonads. In addition, in the left gonad-dominant Sry-expressing substrains B6J and B6NCrl, the medial and central regions of the left gonad had more Sry-expressing cells than those of the right gonad. Substrains of B6 mice have not always been considered in sex differentiation studies. In the present study, however, we observed substrain differences in the number of Sry-expressing cells, left-right distribution, and medial/lateral distribution during the early stages of gonadal development in B6 mice. Therefore, future studies on sex differentiation in B6 mice should consider substrain differences.


Asunto(s)
Gónadas , Cromosoma Y , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Cromosoma Y/genética , Cromosoma Y/metabolismo , Diferenciación Sexual/genética , Testículo/metabolismo
8.
Sci Rep ; 13(1): 1615, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709361

RESUMEN

We previously reported the neuroprotective potential of combined hydrogen (H2) gas ventilation therapy and therapeutic hypothermia (TH) by assessing the short-term neurological outcomes and histological findings of 5-day neonatal hypoxic-ischemic (HI) encephalopathy piglets. However, the effects of H2 gas on cerebral circulation and oxygen metabolism and on prognosis were unknown. Here, we used near-infrared time-resolved spectroscopy to compare combined H2 gas ventilation and TH with TH alone. Piglets were divided into three groups: HI insult with normothermia (NT, n = 10), HI insult with hypothermia (TH, 33.5 ± 0.5 °C, n = 8), and HI insult with hypothermia plus H2 ventilation (TH + H2, 2.1-2.7%, n = 8). H2 ventilation and TH were administered and the cerebral blood volume (CBV) and cerebral hemoglobin oxygen saturation (ScO2) were recorded for 24 h after the insult. CBV was significantly higher at 24 h after the insult in the TH + H2 group than in the other groups. ScO2 was significantly lower throughout the 24 h after the insult in the TH + H2 group than in the NT group. In conclusion, combined H2 gas ventilation and TH increased CBV and decreased ScO2, which may reflect elevated cerebral blood flow to meet greater oxygen demand for the surviving neurons, compared with TH alone.


Asunto(s)
Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Animales , Porcinos , Hipotermia/terapia , Hidrógeno/uso terapéutico , Hipotermia Inducida/métodos , Hemodinámica , Hipoxia-Isquemia Encefálica/patología , Oxígeno/metabolismo , Animales Recién Nacidos
9.
Front Neurosci ; 17: 1308368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292903

RESUMEN

Early child maltreatment, such as child abuse and neglect, is well known to affect the development of social skills. However, the mechanisms by which such an adverse environment interrupts the development of social skills remain unelucidated. Identifying the period and brain regions that are susceptible to adverse environments can lead to appropriate developmental care later in life. We recently reported an excitatory/inhibitory imbalance and low activity during social behavior in the medial prefrontal cortex (mPFC) of the maternal separation (MS) animal model of early life neglect after maturation. Based on these results, in the present study, we investigated how MS disturbs factors related to excitatory and inhibitory neurons in the mPFC until the critical period of mPFC development. Additionally, we evaluated whether the effects of MS could be recovered in an enriched environment after MS exposure. Rat pups were separated from their dams on postnatal days (PDs) 2-20 (twice daily, 3 h each) and compared with the mother-reared control (MRC) group. Gene expression analysis revealed that various factors related to excitatory and inhibitory neurons were transiently disturbed in the mPFC during MS. A similar tendency was found in the sensory cortex; however, decreased parvalbumin (PV) expression persisted until PD 35 only in the mPFC. Moreover, the number of PV+ interneurons decreased in the ventromedial prefrontal cortex (vmPFC) on PD 35 in the MS group. Additionally, perineural net formation surrounding PV+ interneurons, which is an indicator of maturity and critical period closure, was unchanged, indicating that the decreased PV+ interneurons were not simply attributable to developmental delay. This reduction of PV+ interneurons improved to the level observed in the MRC group by the enriched environment from PD 21 after the MS period. These results suggest that an early adverse environment disturbs the development of the mPFC but that these abnormalities allow room for recovery depending on the subsequent environment. Considering that PV+ interneurons in the mPFC play an important role in social skills such as empathy, an early rearing environment is likely a very important factor in the subsequent acquisition of social skills.

10.
Sci Rep ; 12(1): 13157, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915296

RESUMEN

Perinatal hypoxic-ischemic brain injury of neonates remains a significant problem worldwide. During the resuscitation period, changes in cerebral hemoglobin oxygen saturation (ScO2) have been identified by near-infrared spectroscopy (NIRS). However, in asphyxiated neonates, the relationship between these changes and brain injury is not known. Three-wavelength near-infrared time-resolved spectroscopy, an advanced technology for NIRS, allows for the estimation of ScO2 and cerebral blood volume (CBV). Here, we studied changes in ScO2 and CBV during the resuscitation period after hypoxic-ischemic insult and the relationship between these changes after insult and histopathological brain injuries on day 5 after insult using an asphyxiated piglet model. Of 36 newborn piglets subjected to hypoxic-ischemic insult, 29 were analyzed. ScO2 and CBV were measured 0, 5, 10, 15, and 30 min after the insult. Brain tissue was histologically evaluated on day 5. ScO2 and CBV increased immediately after the insult, reached a peak, and then maintained a consistent value. The increase in CBV 5 to 30 min after the insult was significantly correlated with histopathological injury scores. However, there was no correlation with ScO2. In conclusion, an increase in CBV within 30 min after hypoxic-ischemic insult reflects the histopathological brain injury on day 5 after insult in a piglet model.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Encéfalo/patología , Lesiones Encefálicas/patología , Circulación Cerebrovascular/fisiología , Hemodinámica , Hipoxia/patología , Hipoxia-Isquemia Encefálica/patología , Oxígeno , Espectroscopía Infrarroja Corta/métodos , Porcinos
11.
Neurosci Lett ; 782: 136689, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35598694

RESUMEN

First, we aimed to investigate ex vivo the effects of ethanol (EtOH) on levels of norepinephrine (NE), dopamine (DA), serotonin (5-HT), and their metabolites in the frontal cortex, hippocampus, and striatum of Aldh2-knockout (Aldh2-KO) and wild-type (WT) mice. Animals were treated intraperitoneally with saline (control) or EtOH (1.0, 2.0, or 3.0 g/kg). Brain samples were collected 60 and 120 min after EtOH injection, and monoamines and their metabolites were measured by HPLC-ECD. We found in both WT and Aldh2-KO mice that 3.0 g/kg EtOH increased the levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and decreased the level of 3-methoxytyramine (3-MT). A 2.0 g/kg dose of EtOH also increased HVA, but there was not a consistent effect within the brain regions of Aldh2-KO and WT mice. There were inconsistent findings of genotype differences in the levels of DA, 5-HT, and their metabolites in the brain regions tested. None of the EtOH doses altered NE, DA, 5-HT, or 5-hydroxyindoleacetic acid contents in any of the brain regions studied. Second, we tested whether EtOH-induced increases in DOPAC and HVA are mediated by increased monoamine oxidase (MAO) or catechol-O-methyltransferase (COMT) activity. To test this, we used the MAO blocker clorgyline (2.0 and 4.0 mg/kg) and the COMT blocker tolcapone (15 and 30 mg/kg) alone or in combination with EtOH (3.0 g/kg). Clorgyline alone increased 3-MT and decreased DOPAC and HVA levels, whereas tolcapone alone increased DOPAC and decreased 3-MT and HVA levels. Surprisingly, the combination of EtOH with clorgyline (4.0 mg/kg) or tolcapone (30 mg/kg) further decreased 3-MT and increased DOPAC and HVA levels, an effect that reversed the inhibitor-induced decreases in HVA. These results suggest that a high concentration of EtOH can accelerate DA metabolism, as evidenced by the increase in DOPAC and HVA, and this effect is likely a consequence of increased degradation of DA by MAO.


Asunto(s)
Monoaminooxidasa , Serotonina , Ácido 3,4-Dihidroxifenilacético/metabolismo , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Animales , Encéfalo/metabolismo , Catecol O-Metiltransferasa/metabolismo , Clorgilina/metabolismo , Clorgilina/farmacología , Etanol/farmacología , Ácido Homovanílico/metabolismo , Ratones , Monoaminooxidasa/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Tolcapona/metabolismo , Tolcapona/farmacología
12.
Pediatr Int ; 64(1): e14961, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34415096

RESUMEN

BACKGROUND: The effects of therapeutic hypothermia (TH) on renal function are not widely reported, especially in longer term animal models. The hypothesis of this study was that TH of the kidneys of hypoxic-ischemic newborn piglets would reduce pathological renal fibrosis. METHODS: Twenty-five newborn piglets obtained within 24 h of birth were classified into a control group (n = 5), an hypoxic insult with normothermia (HI-NT) group (n = 12), and an hypoxic insult with TH (HI-TH) group (33.5 °C ± 0.5 °C for 24 h; n = 8). Five days after the insult, all piglets were sacrificed under deep anesthesia by isoflurane inhalation. The kidneys were perfused with phosphate-buffered paraformaldehyde and immersed in formalin buffer. Territory fibrosis was studied and scored in the renal medulla using Azan staining. RESULTS: Fibrosis area scores (means ± standard deviations) based on Azan staining were 1.00 ± 0.46 in the control group, 2.85 ± 0.93 in the HI-NT group, and 3.58 ± 1.14 in the HI-TH group. The fibrosis area of the HI-NT and HI-TH groups was larger than that of the control. The HI-NT and HI-TH groups were not statistically different. CONCLUSIONS: Renal fibrosis is affected by perinatal asphyxia and cannot be prevented by TH, based on histopathological findings.


Asunto(s)
Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Asfixia/complicaciones , Asfixia/terapia , Modelos Animales de Enfermedad , Fibrosis , Humanos , Hipoxia/terapia , Hipoxia-Isquemia Encefálica/terapia , Porcinos
13.
Neuropsychopharmacol Rep ; 41(4): 485-495, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34529365

RESUMEN

AIM: The striatum, a main component of the basal ganglia, is a critical part of the motor and reward systems of the brain. It consists of GABAergic and cholinergic neurons and receives projections of dopaminergic, glutamatergic, and serotonergic neurons from other brain regions. Brain-derived neurotrophic factor (BDNF) plays multiple roles in the central nervous system, and striatal BDNF has been suggested to be involved in psychiatric and neurodegenerative disorders. However, the transcriptomic impact of BDNF on the striatum remains largely unknown. In the present study, we performed transcriptomic profiling of striatal cells stimulated with BDNF to identify enriched gene sets (GSs) and their novel target genes in vitro. METHODS: We carried out RNA sequencing (RNA-Seq) of messenger RNA extracted from primary dissociated cultures of rat striatum stimulated with BDNF and conducted Generally Applicable Gene-set Enrichment (GAGE) analysis on 10599 genes. Significant differentially expressed genes (DEGs) were determined by differential expression analysis for sequence count data 2 (DESeq2). RESULTS: GAGE analysis identified significantly enriched GSs that included GSs related to regulation and dysregulation of synaptic functions, such as synaptic vesicle cycle and addiction to nicotine and morphine, respectively. It also detected GSs related to various types of synapses, including not only GABAergic and cholinergic synapses but also dopaminergic and glutamatergic synapses. DESeq2 revealed 72 significant DEGs, among which the highest significance was observed in the apolipoprotein L domain containing 1 (Apold1). CONCLUSIONS: The present study indicates that BDNF predominantly regulates the expression of synaptic-function-related genes and that BDNF promotes synaptogenesis in various subtypes of neurons in the developing striatum. Apold1 may represent a unique target gene of BDNF in the striatum.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cuerpo Estriado , Transcriptoma , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Ratas , Sinapsis/metabolismo
14.
J Cerebrovasc Endovasc Neurosurg ; 23(3): 201-209, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34332521

RESUMEN

OBJECTIVE: Acute mechanical thrombectomy (AMT) in patients with acute ischemic stroke from large vessel occlusion (LVO) is performed without directly identifying the occluded vessels. In this study, we evaluated whether 1.5 T magnetic resonance imaging (MRI) with 3D-fast imaging employing steady-state acquisition (FIESTA) could visualize the occluded intracranial middle cerebral artery (MCA) and internal carotid artery (ICA) before AMT. METHODS: This retrospective study included 21 consecutive patients who underwent time-of-flight magnetic resonance angiography (TOF MRA) and 3D-FIESTA MRI immediately before AMT. The patients also underwent TOF MRA after AMT and achieved TICI 2b or 3 by AMT at our hospital between February 2018 and April 2019. When LVO in the anterior circulation was detected by TOF MRA, 3D-FIESTA MRI was additionally performed. Then, the occluded intracranial MCA and ICA, including their branches, were constructed on the workstation with volume rendering. The obtained images were fused with the TOF MRA images to create combined 3D images. RESULTS: The length and top-to-bottom distance of the affected M1 segment (calculated by the ipsilateral-to-contralateral ratio) were 1.29 and 1.17, respectively, on 3D-FIESTA MRI before AMT and 1.34 and 1.24, respectively, on TOF MRA after AMT. We assessed the number of M2 segments branching from the affected M1/M2 junction and visualized the affected anterior temporal artery. The 3D-FIESTA MRI before AMT and TOF MRA after AMT were consistent in all patients, except for two who moved vigorously during imaging. CONCLUSIONS: Images acquired by 1.5T 3D-FIESTA MRI can visualize to predict the existing path of the occluded MCA and ICA before AMT in patients with LVO of the anterior circulation.

15.
Neonatology ; 117(6): 713-720, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33113527

RESUMEN

BACKGROUND: Therapeutic hypothermia (TH) is a standard therapy for neonatal hypoxic-ischaemic encephalopathy. One potential additional therapy is the free radical scavenger edaravone (EV; 3-methyl-1-phenyl-2-pyrazolin-5-one). OBJECTIVES AND METHODS: This study aimed to compare the neuroprotective effects of edaravone plus therapeutic hypothermia (TH + EV) with those of TH alone after a hypoxic-ischaemic insult in the newborn piglet. Anaesthetized piglets were subjected to 40 min of hypoxia (3-5% inspired oxygen), and cerebral ischaemia was assessed using cerebral blood volume. Body temperature was maintained at 39.0 ± 0.5°C in the normothermia group (NT, n = 8) and at 33.5 ± 0.5°C (24 h after the insult) in the TH (n = 7) and TH + EV (3 mg/kg intravenous every 12 h for 3 days after the insult; n = 6) groups under mechanical ventilation. RESULTS: Five days after the insult, the mean (standard deviation) neurological scores were 10.9 (5.7) in the NT group, 17.0 (0.4) in the TH group (p = 0.025 vs. NT), and 15.0 (3.9) in the TH + EV group. The histopathological score of the TH + EV group showed no significant improvement compared with that of the other groups. CONCLUSION: TH + EV had no additive neuroprotective effects after hypoxia-ischaemia in neurological and histopathological assessments.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Encéfalo , Modelos Animales de Enfermedad , Edaravona , Hipoxia , Hipoxia-Isquemia Encefálica/terapia , Isquemia , Neuroprotección , Porcinos
16.
ACS Synth Biol ; 9(10): 2679-2691, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32907319

RESUMEN

Embedding middle-scale artificial gene networks in live mammalian cells is one of the most important future goals for cell engineering. However, the applications of the highly orthogonal and conventional artificial transcription factors currently available are limited. In this study, we present a scalable pipeline to produce artificial transcription factors based on homing endonucleases, also known as meganucleases. The introduction of mutations at critical sites for nuclease activity renders these homing endonucleases a simple but highly specific DNA binding domain for their specific DNA target. The introduction of inactivated meganucleases linked to transcriptional activator domains strongly induced reporter gene expression, while their fusion to transcriptional repressor domains suppressed them. In addition, we show that inactivated meganuclease-based transcription factors could be embedded in the synthetic membrane receptor synNotch and used to construct synthetic circuits. These results suggest that inactivated meganucleases are useful DNA-binding domains for the construction of synthetic transcription factors in mammalian cells.


Asunto(s)
Ingeniería Celular/métodos , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Cricetinae , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Redes Reguladoras de Genes , Genes Reporteros , Células HEK293 , Humanos , Ratones , Receptores Quiméricos de Antígenos , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Transcriptoma , Transfección
17.
Heliyon ; 6(8): e04781, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32923721

RESUMEN

It is widely accepted that maternal separation (MS) induces stress in children and disrupts neural circuit formation during early brain development. Even though such disruption occurs transiently early in life, its influence persists after maturation, and could lead to various neurodevelopmental disorders. Our recent study revealed that repeated MS reduces the number of inhibitory neurons and synapses in the medial prefrontal cortex (mPFC) and causes mPFC-related social deficits after maturation. However, how MS impedes mPFC development during early brain development remains poorly understood. Here, we focused on brain-derived neurotrophic factor (BDNF) involved in the development of inhibitory neurons, and examined time-dependent BDNF expression in the mPFC during the pre-weaning period in male rats exposed to MS. Our results show that MS attenuates BDNF expression only around the end of the first postnatal week. Likewise, mRNA expression of activity-regulated cytoskeleton-associated protein (Arc), an immediate-early gene whose expression is partly regulated by BDNF, also decreased in the MS group along with the reduction in BDNF expression. On the contrary, mRNA expression of tropomyosin-related kinase B (TrkB), which is a BDNF receptor, was scarcely altered, while its protein expression decreased in the MS group only during the weaning period. In addition, MS reduced mRNA levels of glutamic acid decarboxylase (GAD) 65, a GABA synthesizing enzyme, only during the weaning period. Our results suggest that repeated MS temporarily attenuates BDNF signaling in the mPFC during early brain development. BDNF plays a crucial role in the development of inhibitory neurons; therefore, transient attenuation of BDNF signaling may cause delays in GABAergic neuron development in the mPFC.

18.
Neurointervention ; 15(2): 89-95, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32544985

RESUMEN

Mechanical thrombectomy has become a standard treatment for acute ischemic stroke with large vessel occlusion. In aged patients, it is difficult to guide the catheter via the transfemoral approach due to vessel tortuosity and aortic elongation. We report our preliminary clinical experience using the transbrachial approach. Among the 119 patients who underwent thrombectomy from April 2018 to December 2019, a total of 5 patients were treated via the transbrachial approach. Clinical outcomes were retrospectively analyzed. Successful reperfusion was achieved in 4 out of 5 cases. There was 1 death due to symptomatic intracranial hemorrhage. One patient had a good outcome at discharge. There were no access-site complications associated with any of these cases. Transbrachial access for mechanical thrombectomy is feasible and can provide an alternative to the transfemoral approach.

19.
Neuropsychopharmacol Rep ; 40(3): 275-280, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32558188

RESUMEN

AIM: Chromosome 8 open reading frame 46 (C8orf46), a human protein-coding gene, has recently been named Vexin. A recent study indicated that Vexin is involved in embryonic neurogenesis. Additionally, some transcriptomic studies detected changes in the mRNA levels of patients with psychiatric and neurological diseases. In our previous study, we sought for target genes of brain-derived neurotrophic factor (BDNF) in cultured rat cortical neurons, finding that BDNF potentially leads to the upregulation of Vexin mRNA. However, its underlying mechanisms are unknown. In the present study, we assessed the regulatory mechanisms of the BDNF-induced gene expression of Vexin in vitro. METHODS: We reanalyzed ChIP-seq data in various human organs provided by the ENCODE project, evaluating acetylation levels of the 27th lysine residue of the histone H3 (H3K27ac) at the Vexin locus. The transcriptomic effects of BDNF on rat Vexin (RGD1561849) were evaluated by real-time quantitative PCR (RT-qPCR) in primary cultures of cerebral cortical neurons, in the presence or absence of inhibitors for signaling molecules activated by BDNF. RESULTS: The Vexin locus and its promoter region in the brain angular gyrus show higher acetylation levels of the H3K27 than those in other organs. Stimulation of cultured rat cortical neurons, but not astrocyte, with BDNF, led to marked elevations in the mRNA levels of Vexin, which was inhibited in the presence of K252a and U0126. CONCLUSION: The upregulated H3K27ac in the brain may be associated with the enriched gene expression of Vexin in the brain. It is indicated that BDNF induces the gene expression of Vexin in the cortical neurons via the TrkB-MEK signaling pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Regulación hacia Arriba/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
20.
World Neurosurg ; 140: 193-197, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360925

RESUMEN

BACKGROUND: Traumatic intracranial aneurysms are rare complications after head trauma. This report describes the case of a patient with a traumatic pericallosal aneurysm. CASE DESCRIPTION: A 73-year-old man developed headache and lower limb paresis, and emergency computed tomography scan revealed a hematoma in the corpus callosum. We performed coil embolization for a pericallosal aneurysm, but follow-up angiography showed recurrence of the aneurysm 6 days after the surgery. We diagnosed this as a traumatic aneurysm and subsequently performed parent artery occlusion without any complications. CONCLUSIONS: We performed parent artery occlusion for a traumatic aneurysm of the pericallosal artery without complications. Pericallosal aneurysms are rare, but we must consider them when encountering a delayed hematoma around the corpus callosum.


Asunto(s)
Arteria Cerebral Anterior/cirugía , Traumatismos Craneocerebrales/complicaciones , Embolización Terapéutica , Aneurisma Intracraneal/cirugía , Anciano , Humanos , Aneurisma Intracraneal/etiología , Masculino , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...