Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(12): 123605, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179203

RESUMEN

The power spectrum of an optical field can be acquired without a spectrally resolving detector by means of Fourier-transform spectrometry, based on measuring the temporal autocorrelation of the optical field. Analogously, we here perform temporal envelope measurements of ultrashort optical pulses without time resolved detection. We introduce the technique of Fourier transform chronometry, where the temporal envelope is acquired by measuring the frequency autocorrelation of the optical field in a linear interferometer. We apply our technique, which is the time-frequency conjugate measurement to Fourier-transform spectrometry, to experimentally measure the pulse envelope of classical and single-photon light pulses.

2.
Appl Opt ; 55(19): 5141-8, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27409202

RESUMEN

Minimal mutual coherence of discrete noiselets and Haar wavelets makes this pair of bases an essential choice for the measurement and compression matrices in compressed-sensing-based single-pixel detectors. In this paper, we propose an efficient way of using complex-valued and nonbinary noiselet functions for object sampling in single-pixel cameras with binary spatial light modulators and incoherent illumination. The proposed method allows us to determine m complex noiselet coefficients from m+1 binary sampling measurements. Further, we introduce a modification to the complex fast noiselet transform, which enables computationally efficient real-time generation of the binary noiselet-based patterns using efficient integer calculations on bundled patterns. The proposed method is verified experimentally with a single-pixel camera system using a binary spatial light modulator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...