Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36771924

RESUMEN

In this work, we report our results on the hydrodynamic behavior of poly(2-methyl-2-oxazoline) (PMeOx). PMeOx is gaining significant attention for use as hydrophilic polymer in pharmaceutical carriers as an alternative for the commonly used poly(ethylene glycol) (PEG), for which antibodies are found in a significant fraction of the human population. The main focus of the current study is to determine the hydrodynamic characteristics of PMeOx under physiological conditions, which serves as basis for better understanding of the use of PMeOx in pharmaceutical applications. This goal was achieved by studying PMeOx solutions in phosphate-buffered saline (PBS) as a solvent at 37 °C. This study was performed based on two series of PMeOx samples; one series is synthesized by conventional living cationic ring-opening polymerization, which is limited by the maximum chain length that can be achieved, and a second series is obtained by an alternative synthesis strategy based on acetylation of well-defined linear poly(ethylene imine) (PEI) prepared by controlled side-chain hydrolysis of a defined high molar mass of poly(2-ethyl-2-oxazoline). The combination of these two series of PMeOx allowed the determination of the Kuhn-Mark-Houwink-Sakurada equations in a broad molar mass range. For intrinsic viscosity, sedimentation and diffusion coefficients, the following expressions were obtained: η=0.015M0.77, s0=0.019M0.42 and D0=2600M-0.58, respectively. As a result, it can be concluded that the phosphate-buffered saline buffer at 37 °C represents a thermodynamically good solvent for PMeOx, based on the scaling indices of the equations. The conformational parameters for PMeOx chains were also determined, revealing an equilibrium rigidity or Kuhn segment length, (A) of 1.7 nm and a polymer chain diameter (d) of 0.4 nm. The obtained value for the equilibrium rigidity is very similar to the reported values for other hydrophilic polymers, such as PEG, poly(vinylpyrrolidone) and poly(2-ethyl-2-oxazoline), making PMeOx a relevant alternative to PEG.

2.
Molecules ; 29(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202609

RESUMEN

An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution.

3.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35566943

RESUMEN

Nowadays, the study of metallopolymers is one of the fastest growing areas of polymer science. Metallopolymers have great potential for application in multiple technological and various biomedical processes. The macromolecules with the possibility of varying the number and type of metal ions along the entire length of the polymer chain are of particular interest. In this regard, this study presents results on two successfully synthesized homopolymers, random and block copolymers based on PMMA, containing ferrocene and terpyridine moieties in the side chain. Different architectures of copolymers may attribute interesting properties when creating complexes with various metal ions. A detailed hydrodynamic study of these structures was carried out, the consistency of hydrodynamic data was established using the concept of a hydrodynamic invariant, the absolute values of the molar masses of the studied objects were calculated, and the conformational parameters of macromolecules were determined. Using the Fixman-Stockmayer theory, the equilibrium rigidities of the studied systems were calculated and the relationship between the chemical structure and conformational characteristics was established. The studied copolymers can be attributed to the class of flexible-chain macromolecules. An increase in the equilibrium rigidity value with an increase of the side chain, which is characteristic of comb-shaped polymers, was determined.

4.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35267767

RESUMEN

The contribution deals with the synthesis of the poly(methacrylate)-based copolymers, which contain ferrocene and/or terpyridine moieties in the side chains, and the subsequent analysis of their self-assembly behavior upon supramolecular/coordination interactions with Eu3+ and Pd2+ ions in dilute solutions. Both metal ions provoke intra and inter molecular complexation that results in the formation of large supra-macromolecular assembles of different conformation/shapes. By applying complementary analytical approaches (i.e., sedimentation-diffusion analysis in the analytical ultracentrifuge, dynamic light scattering, viscosity and density measurements, morphology studies by electron microscopy), a map of possible conformational states/shapes was drawn and the corresponding fundamental hydrodynamic and macromolecular characteristics of metallo-supramolecular assemblies at various ligand-to-ion molar concentration ratios (M/L) in extremely dilute polymer solutions (c[η]≈0.006) were determined. It was shown that intramolecular complexation is already detected at (L≈0.1), while at M/L>0.5 solution/suspension precipitates. Extreme aggregation/agglomeration behavior of such dilute polymer solutions at relatively "high" metal ion content is explained from the perspective of polymer-solvent and charge interactions that will accompany the intramolecular complexation due to the coordination interactions.

5.
Polymers (Basel) ; 11(12)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817077

RESUMEN

The interaction of silver nitrate with star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) containing central thiacalix[4]arene cores, which proceeds under visible light in aqueous solutions at ambient temperature, was studied. It was found that this process led to the formation of stable colloidal solutions of silver nanoparticles. The kinetics of the formation of the nanoparticles was investigated by the observation of a time-dependent increase in the intensity of the plasmon resonance peak that is related to the nanoparticles and appears in the range of 400 to 700 nm. According to the data of electron and X-ray spectroscopy, scanning and transmission electron microscopy, X-ray diffraction analysis, and dynamic light scattering, the radius of the obtained silver nanoparticles is equal to 30 nm. In addition, the flow birefringence experiments showed that solutions of nanoparticles have high optical shear coefficients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...