Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 17185, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433866

RESUMEN

Inflammation plays a crucial role in stroke pathogenesis. Thus, it is not surprising that cytokines, chemokines, and growth factors have been advocated in stroke diagnostics. Our study is the first to evaluate the salivary cytokine profile in patients with ischemic stroke. Twenty-five patients with subacute ischemic stroke and an age-, sex-, and oral hygiene status-matched control group were enrolled in the study. The number of patients was set a priori based on our previous experiment (α = 0.05, test power = 0.9). Salivary concentrations of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 10 (IL-10) were assessed using an ELISA method. We showed that salivary TNF-α and IL-6 were significantly higher, whereas IL-10 content was statistically lower in both non-stimulated (NWS) and stimulated (SWS) whole saliva of ischemic stroke patients. However, evaluation of cytokines in NWS rather than in SWS may be of greater diagnostic value. Of particular note is salivary TNF-α, which may indicate cognitive/physical impairment in post-stroke individuals. This parameter distinguishes stroke patients from healthy controls and correlates with cognitive decline and severity of functional impairment. It also differentiates (with high sensitivity and specificity) stroke patients with normal cognition from mild to moderate cognitive impairment. Saliva may be an alternative to blood for assessing cytokines in stroke patients, although further studies on a larger patient population are needed.


Asunto(s)
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Saliva/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Accidente Cerebrovascular Isquémico/patología , Masculino , Persona de Mediana Edad
2.
Oxid Med Cell Longev ; 2021: 5575545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763167

RESUMEN

Valsartan belongs to angiotensin II type 1 (AT1) receptor blockers (ARB) used in cardiovascular diseases like heart failure and hypertension. Except for its AT1-antagonism, another mechanism of drug action has been suggested in recent research. One of the supposed actions refers to the positive impact on redox balance and reducing protein glycation. Our study is aimed at assessing the antiglycooxidant properties of valsartan in an in vitro model of oxidized bovine serum albumin (BSA). Glucose, fructose, ribose, glyoxal (GO), methylglyoxal (MGO), and chloramine T were used as glycation or oxidation agents. Protein oxidation products (total thiols, protein carbonyls (PC), and advanced oxidation protein products (AOPP)), glycooxidation products (tryptophan, kynurenine, N-formylkynurenine, and dityrosine), glycation products (amyloid-ß structure, fructosamine, and advanced glycation end products (AGE)), and albumin antioxidant activity (total antioxidant capacity (TAC), DPPH assay, and ferric reducing antioxidant power (FRAP)) were measured in each sample. In the presence of valsartan, concentrations of protein oxidation and glycation products were significantly lower comparing to control. Moreover, albumin antioxidant activity was significantly higher in those samples. The drug's action was comparable to renowned antiglycation agents and antioxidants, e.g., aminoguanidine, metformin, Trolox, N-acetylcysteine, or alpha-lipoic acid. The conducted experiment proves that valsartan can ameliorate protein glycation and oxidation in vitro in various conditions. Available animal and clinical studies uphold this statement, but further research is needed to confirm it, as reduction of protein oxidation and glycation may prevent cardiovascular disease development.


Asunto(s)
Antioxidantes/farmacología , Valsartán/farmacología , Acetilcisteína/farmacología , Animales , Captopril/farmacología , Cloraminas , Cromanos/farmacología , Fructosa , Glucosa , Glicosilación , Humanos , Metformina/farmacología , Oxidación-Reducción , Piruvaldehído , Albúmina Sérica Bovina/metabolismo , Ácido Tióctico/farmacología , Compuestos de Tosilo
3.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927809

RESUMEN

Meloxicam is a non-steroidal anti-inflammatory drug, which has a preferential inhibitory effect to cyclooxyganase-2 (COX-2). Although the drug inhibits prostaglandin synthesis, the exact mechanism of meloxicam is still unknown. This is the first study to assess the effect of meloxicam on protein glyco-oxidation as well as antioxidant activity. For this purpose, we used an in vitro model of oxidized bovine serum albumin (BSA). Glucose, fructose, ribose, glyoxal and methylglyoxal were used as glycating agents, while chloramine T was used as an oxidant. We evaluated the antioxidant properties of albumin (2,2-di-phenyl-1-picrylhydrazyl radical scavenging capacity, total antioxidant capacity and ferric reducing antioxidant power), the intensity of protein glycation (Amadori products, advanced glycation end products) and glyco-oxidation (dityrosine, kynurenine, N-formylkynurenine, tryptophan and amyloid-ß) as well as the content of protein oxidation products (advanced oxidation protein products, carbonyl groups and thiol groups). We have demonstrated that meloxicam enhances the antioxidant properties of albumin and prevents the protein oxidation and glycation under the influence of various factors such as sugars, aldehydes and oxidants. Importantly, the antioxidant and anti-glycating activity is similar to that of routinely used antioxidants such as captopril, Trolox, reduced glutathione and lipoic acid as well as protein glycation inhibitors (aminoguanidine). Pleiotropic action of meloxicam may increase the effectiveness of anti-inflammatory treatment in diseases with oxidative stress etiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA