Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 399-402, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194578

RESUMEN

For a Rydberg atom-based sensor to change its sensing frequency, the wavelength of the Rydberg state excitation laser must be altered. The wavelength shifts required can be on the order of 10 nm. A fast-tunable narrow-linewidth laser with broadband tuning capability is required. Here, we present a demonstration of a laser system that can rapidly switch a coupling laser as much as 8 nm in less than 50 µs. The laser system comprises a frequency-stabilized continuous wave laser and an electro-optic frequency comb. A filter enables selection of individual comb lines. A high-speed electro-optic modulator is used to tune the selected comb line to a specific frequency, i.e., an atomic transition. Through Rydberg atom-based sensing experiments, we demonstrate frequency hopping between two Rydberg states and a fast switching time of 400 µs, which we show can be reduced to ∼50 µs with a ping-pong scheme. If updating the RF frequency is not required during frequency hopping, a 200 ns switching time can be achieved. These results showcase the potential of the laser system for advanced Rydberg atom-based radio frequency sensing applications, like communications and radar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA